基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Recently, regression artificial neural networks are used to model various systems that have high dimensionality with nonlinear relations. The system under study must have enough dataset available to train the neural network. The aim of this work is to apply and experiment various options effects on feed-foreword artificial neural network (ANN) which used to obtain regression model that predicts electrical output power (EP) of combined cycle power plant based on 4 inputs. Dataset is obtained from an open online source. The work shows and explains the stochastic behavior of the regression neural, experiments the effect of number of neurons of the hidden layers. It shows also higher performance for larger training dataset size;at the other hand, it shows different effect of larger number of variables as input. In addition, two different training functions are applied and compared. Lastly, simple statistical study on the error between real values and estimated values using ANN is conducted, which shows the reliability of the model. This paper provides a quick reference to the effects of main parameters of regression neural networks.
推荐文章
逻辑参数库中Power参数的提取
逻辑参数
Power提取
激励波形
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
日产公司新型混合动力总成"e-POWER"
混合动力汽车
e-POWER
燃油系统设计
实际应用条件下Power MOSFET开关特性研究(上)
Power MOSFET
开关特性
开通
关断
密勒效应
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Prediction of Electrical Output Power of Combined Cycle Power Plant Using Regression ANN Model
来源期刊 电力能源(英文) 学科 医学
关键词 NEURAL NETWORKS Regression Combined Power CYCLE MATLAB NEURAL NETWORKS TOOLBOX
年,卷(期) 2018,(12) 所属期刊栏目
研究方向 页码范围 17-38
页数 22页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
NEURAL
NETWORKS
Regression
Combined
Power
CYCLE
MATLAB
NEURAL
NETWORKS
TOOLBOX
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电力能源(英文)
月刊
2327-588X
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
568
总下载数(次)
0
总被引数(次)
0
论文1v1指导