基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
As a main distributed computing system,Spark has been used to solve problems with more and more complex tasks.However,the native scheduling strategy of Spark assumes it works on a homogenized cluster,which is not so effective when it comes to heterogeneous cluster.The aim of this study is looking for a more effective strategy to schedule tasks and adding it to the source code of Spark.After investigating Spark scheduling principles and mechanisms,we developed a stratifying algorithm and a node scheduling algorithm is proposed in this paper to optimize the native scheduling strategy of Spark.In this new strategy,the static level of nodes is calculated,the dynamic factors such as the length of running tasks,and CPU usage of work nodes are considered comprehensively.And through a series of comparative experiments in alienation cluster,the new strategy costs less running time and lower CPU usage rate than the original Spark strategy,which verifies that the new schedule strategy is more effective one.
推荐文章
Heterogeneous Mg isotopic composition of the early Carboniferous limestone: implications for carbona
Seawater Mg isotopic composition
Limestone
Fossil
Micrite
Cement
Cluster-Merge本体构造算法
本体学习
文档聚类
k-means聚类算法
相似度
本体合并
Spark数据倾斜问题研究
大数据
Spark
数据倾斜
数据处理
Hadoop与Spark应用场景研究
Hadoop
Spark
大数据
生态系统
应用场景
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 A Spark Scheduling Strategy for Heterogeneous Cluster
来源期刊 计算机、材料和连续体(英文) 学科 工学
关键词 SPARK optimize SCHEDULING stratifying ALGORITHM PERFORMANCE OPTIMIZATION
年,卷(期) 2018,(6) 所属期刊栏目
研究方向 页码范围 405-417
页数 13页 分类号 TP3
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
SPARK
optimize
SCHEDULING
stratifying
ALGORITHM
PERFORMANCE
OPTIMIZATION
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机、材料和连续体(英文)
月刊
1546-2218
江苏省南京市浦口区东大路2号东大科技园A
出版文献量(篇)
346
总下载数(次)
4
总被引数(次)
0
论文1v1指导