基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对传统命名实体识别需要大量人工及规则信息的问题,提出一种基于条件随机场(conditional random field,CRF)和双向长短时记忆(bi-directional long short-term memory,BI-LSTM)神经网络的命名实体识别方法.其中,CRF模型在进行中文分词的时候考虑到了未登录词的问题,具备较好的学习能力;双向长短期神经网络能够很好地保留上下文信息的特性.通过使用北京大学标注的1998年人民日报语料库对所提方法进行实验,结果表明:Dropout参数对命名实体识别的效果存在积极影响;同时当Dropout参数取不变时,双向LSTM模型比单向LSTM模型(long short-term memory,LSTM)在中文命名实体识别任务中取得了更好的识别效果.
推荐文章
基于BI-LSTM-CRF的作战文书命名实体识别
深度学习
作战文书
命名实体识别
双向LSTM
CRF
基于BLSTM-CRF中文领域命名实体识别框架设计
BLSTM-CRF
CBOW
Boson
命名实体识别
基于E-CNN和BLSTM-CRF的临床文本命名实体识别
命名实体识别
临床文本
集成的卷积神经网络
结合Bi-LSTM与VDCNN的社交网络攻击性言论识别方法
攻击性言论识别
文本分类
卷积神经网络
深度残差网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于CRF和BI-LSTM的命名实体识别方法
来源期刊 北京信息科技大学学报(自然科学版) 学科 工学
关键词 命名实体识别 条件随机场 BI-LSTM
年,卷(期) 2018,(6) 所属期刊栏目
研究方向 页码范围 27-33
页数 7页 分类号 TP391
字数 5510字 语种 中文
DOI 10.16508/j.cnki.11-5866/n.2018.06.006
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 侯霞 北京信息科技大学计算机学院 56 171 8.0 11.0
2 柏兵 北京信息科技大学计算机学院 2 14 1.0 2.0
3 石松 北京信息科技大学计算机学院 2 14 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (21)
共引文献  (89)
参考文献  (9)
节点文献
引证文献  (14)
同被引文献  (9)
二级引证文献  (0)
1972(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(3)
  • 参考文献(1)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(4)
  • 参考文献(1)
  • 二级参考文献(3)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(2)
  • 参考文献(2)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(8)
  • 引证文献(8)
  • 二级引证文献(0)
2020(6)
  • 引证文献(6)
  • 二级引证文献(0)
研究主题发展历程
节点文献
命名实体识别
条件随机场
BI-LSTM
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
北京信息科技大学学报(自然科学版)
双月刊
1674-6864
11-5866/N
大16开
北京市
1986
chi
出版文献量(篇)
2043
总下载数(次)
10
总被引数(次)
11074
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导