作者:
原文服务方: 计算技术与自动化       
摘要:
在较为深入地研究医疗文本实体识别的现有方法的基础上,设计一种基于深度学习的医疗文本实体识别方法.本文在医疗文本数据集上进行实体识别对比实验,所识别目标实体包含疾病,症状,药品,治疗方法和检查五大类.实验结果表明,设计的深度神经网络模型能够很好的应用到医疗文本实体识别,本文所设计的方法比传统算法(如CRF)具有较少人工特征干预及更高的准确率和召回率等优点.
推荐文章
BioTrHMM:基于迁移学习的生物医学命名实体识别算法
迁移学习
隐马尔可夫模型
命名实体识别
文本挖掘
基于位置敏感Embedding的中文命名实体识别
命名实体识别
表示学习
Embedding
多尺度聚类
条件随机场
一种基于命名实体识别的需求跟踪方法
需求跟踪
命名实体识别
语义聚类
自然语言处理
权重计算
基于条件随机场的汉语命名实体识别
可视化工作室2008
条件随机场
汉语分词
命名实体识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度学习的医疗命名实体识别
来源期刊 计算技术与自动化 学科
关键词 实体识别 数据挖掘 深度学习 医疗信息
年,卷(期) 2017,(1) 所属期刊栏目 计算机软件及应用
研究方向 页码范围 123-127
页数 5页 分类号 U491.14
字数 语种 中文
DOI 10.3969/j.issn.1003-6199.2017.01.025
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张帆 湖南大学电气与信息工程学院 52 500 12.0 21.0
2 王敏 湖南大学电气与信息工程学院 42 430 9.0 20.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (35)
共引文献  (56)
参考文献  (10)
节点文献
引证文献  (22)
同被引文献  (32)
二级引证文献  (27)
1970(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(6)
  • 参考文献(1)
  • 二级参考文献(5)
2007(6)
  • 参考文献(0)
  • 二级参考文献(6)
2008(4)
  • 参考文献(1)
  • 二级参考文献(3)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(3)
  • 参考文献(1)
  • 二级参考文献(2)
2011(5)
  • 参考文献(1)
  • 二级参考文献(4)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(2)
  • 参考文献(1)
  • 二级参考文献(1)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(6)
  • 引证文献(6)
  • 二级引证文献(0)
2019(23)
  • 引证文献(15)
  • 二级引证文献(8)
2020(19)
  • 引证文献(0)
  • 二级引证文献(19)
研究主题发展历程
节点文献
实体识别
数据挖掘
深度学习
医疗信息
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算技术与自动化
季刊
1003-6199
43-1138/TP
16开
1982-01-01
chi
出版文献量(篇)
2979
总下载数(次)
0
论文1v1指导