基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在机器学习应用中,缺失值填补作为一种预处理技术,能有效提高数据的可用性,然而在缺失值较多或不均衡时,这些技术的效果并不理想.主动学习场景允许机器与用户交互,以获取少量关键数据,提高分类精度.针对主动获取数据量有限的问题,提出基于协同过滤加权预测的主动学习缺失值填补算法(Collaborative Filtering weighted prediction based Active Learning,CFAL).首先采用基于样本和基于属性的协同过滤方法分别预测缺失值;然后根据预测值的差异对数据进行排序,差异大的少量数据进行主动获取,差异小的少量数据利用预测值的平均值进行填补;重复该过程直到主动获取数据达到所给阈值上限,其余缺失值则使用预测值均值填补.实验在七个UCI常用数据集上进行,结果表明,与流行的几种填补算法相比,CFAL算法能更好地提升数据质量,应用于C4.5,kNN等算法能获得更高的分类精度.
推荐文章
一种基于相同评分矩阵的协同过滤补值算法
相同评分矩阵
协同过滤
补值
稀疏性
融合改进加权Slope One的协同过滤算法
加权Slope One
项目相似度
协同过滤
矩阵填充
数据稀疏性
分步预测的协同过滤算法
数据稀疏性
协同过滤
分步预测
准确度
基于置信度加权的单类协同过滤推荐算法
推荐系统
单类协同过滤
隐性反馈
置信度加权
异构置信度优化
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于协同过滤加权预测的主动学习缺失值填补算法
来源期刊 南京大学学报(自然科学版) 学科 工学
关键词 数据缺失 协同过滤 预测填补 主动学习 分类
年,卷(期) 2018,(4) 所属期刊栏目
研究方向 页码范围 758-765
页数 8页 分类号 TP181
字数 5215字 语种 中文
DOI 10.13232/j.cnki.jnju.2018.04.011
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 闵帆 西南石油大学计算机科学学院 16 19 3.0 4.0
2 任杰 西南石油大学计算机科学学院 10 6 2.0 2.0
3 黄帷 西南石油大学计算机科学学院 1 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (27)
共引文献  (126)
参考文献  (14)
节点文献
引证文献  (3)
同被引文献  (0)
二级引证文献  (0)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(2)
  • 参考文献(1)
  • 二级参考文献(1)
1998(3)
  • 参考文献(1)
  • 二级参考文献(2)
1999(2)
  • 参考文献(1)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(3)
  • 参考文献(1)
  • 二级参考文献(2)
2003(5)
  • 参考文献(1)
  • 二级参考文献(4)
2004(3)
  • 参考文献(1)
  • 二级参考文献(2)
2005(4)
  • 参考文献(1)
  • 二级参考文献(3)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(3)
  • 参考文献(1)
  • 二级参考文献(2)
2008(4)
  • 参考文献(1)
  • 二级参考文献(3)
2009(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(3)
  • 参考文献(1)
  • 二级参考文献(2)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(3)
  • 引证文献(3)
  • 二级引证文献(0)
研究主题发展历程
节点文献
数据缺失
协同过滤
预测填补
主动学习
分类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
南京大学学报(自然科学版)
双月刊
0469-5097
32-1169/N
江苏省南京市南京大学
chi
出版文献量(篇)
2526
总下载数(次)
6
总被引数(次)
23071
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导