基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
利用神经网络提取的图像全局特征包含图像上的冗余信息,影响检索的精度,为了解决这个问题,提出了一种基于VGG16的改进网络结构、保留图像空间信息、提取图像显著性区域局部特征的算法.首先利用改进的网络对数据进行训练,得到准确率较高的模型,利用训练好的模型对所有图像使用类激活映射(CAM)的方法定位出图像的显著性区域;然后利用相同的模型提取局部显著性区域特征,构建图像数据库;最后对查询图像使用距离比较函数(L2)计算相似度,按相似度大小排列返回相似图像.在Corel数据集上,对比提取神经网络全局特征以及使用传统SIFT特征构建的K-means模型,使用局部显著性区域特征有较高的检索精度.实验结果表明,该模型有较好的检索效果.
推荐文章
基于提取标签显著性区域的深度学习图像检索方法
显著性区域
标签向量化
word2vec
图像三元组
图像检索
哈希编码
卷积特征图融合与显著性 检测的图像检索
图像检索
特征图融合
显著性检测
卷积神经网络
基于提取标签显著性区域的深度学习图像检索方法
显著性区域
标签向量化
word2vec
图像三元组
图像检索
哈希编码
基于视觉注意机制的彩色图像显著性区域提取
显著性区域提取
视觉注意机制
分水岭
区域化空间注意力模型
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度学习的显著性区域的图像检索研究
来源期刊 应用科技 学科 工学
关键词 图像检索 卷积神经网络 局部特征 全局特征 显著性区域 相似度 深度学习 模型训练
年,卷(期) 2018,(6) 所属期刊栏目 计算机技术与应用
研究方向 页码范围 63-67
页数 5页 分类号 TP391
字数 4059字 语种 中文
DOI 10.11991/yykj.201803012
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王立新 北京航空航天大学自动化科学与电气工程学院 80 483 12.0 18.0
2 江加和 北京航空航天大学自动化科学与电气工程学院 10 35 4.0 5.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (12)
共引文献  (26)
参考文献  (3)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(4)
  • 参考文献(0)
  • 二级参考文献(4)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(5)
  • 参考文献(0)
  • 二级参考文献(5)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
图像检索
卷积神经网络
局部特征
全局特征
显著性区域
相似度
深度学习
模型训练
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
应用科技
双月刊
1009-671X
23-1191/U
大16开
哈尔滨市南通大街145号1号楼
14-160
1974
chi
出版文献量(篇)
4861
总下载数(次)
7
总被引数(次)
21528
论文1v1指导