基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对PM2.5浓度预测中存在的特征变量之间关系复杂、信息冗余问题,提出了一种基于互信息最大相关最小冗余(maximum relevance-minimum redundancy,MRMR)准则结合粒子群优化算法(particle swarm optimization,PSO)的混合特征选择算法,并采用所设计的递归模糊神经网络(recurrent fuzzy neural network,RFNN)为预测模型实现PM2.5浓度预测.首先根据MRMR准则对变量的互信息进行计算并排序,过滤掉一些相关性小的特征.然后将PSO优化算法与RFNN预测模型结合,以RFNN的预测精度作为PSO的适应度函数在过滤得到的特征中选择出最优特征子集,作为RFNN模型的输入变量.将该方法用于PM2.5浓度预测实验,与3种不同特征选择算法的结果进行对比,基于互信息和PSO混合特征选择方法的RFNN预测模型利用最少的特征获得了最小的预测误差,说明该方法能够有效地用于PM2.5浓度预测.
推荐文章
基于BP人工神经网络的鹰潭市PM2.5和PM10浓度预测模型
大气颗粒物
预测模型
BP人工神经网络
气象要素
气体污染物
基于自组织递归模糊神经网络的PM2.5浓度预测
PM2.5
预测
PCA
递归模糊神经网络
自组织
自适应梯度下降
基于LSTM的PM2.5浓度预测模型
PM2.5
LSTM循环神经网络
时序特征
基于改进神经网络算法的PM2.5污染信号分析检测
改进神经网络算法
污染检测
网络误差
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于MRMR-PSO的递归模糊神经网络PM2.5预测模型
来源期刊 计算机与应用化学 学科 化学
关键词 PM2.5 互信息 PSO优化 模糊神经网络
年,卷(期) 2018,(10) 所属期刊栏目
研究方向 页码范围 783-791
页数 9页 分类号 TQ015.9|TP391.9|O6-39
字数 语种 中文
DOI 10.16866/j.com.app.chem201810001
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (94)
共引文献  (100)
参考文献  (22)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1900(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(4)
  • 参考文献(3)
  • 二级参考文献(1)
2006(5)
  • 参考文献(0)
  • 二级参考文献(5)
2007(7)
  • 参考文献(0)
  • 二级参考文献(7)
2008(6)
  • 参考文献(1)
  • 二级参考文献(5)
2009(6)
  • 参考文献(1)
  • 二级参考文献(5)
2010(8)
  • 参考文献(2)
  • 二级参考文献(6)
2011(4)
  • 参考文献(1)
  • 二级参考文献(3)
2012(14)
  • 参考文献(3)
  • 二级参考文献(11)
2013(14)
  • 参考文献(2)
  • 二级参考文献(12)
2014(16)
  • 参考文献(4)
  • 二级参考文献(12)
2015(9)
  • 参考文献(3)
  • 二级参考文献(6)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
PM2.5
互信息
PSO优化
模糊神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机与应用化学
双月刊
1001-4160
11-3763/TP
大16开
北京中关村北二街2条1号
82-500
1984
chi
出版文献量(篇)
5704
总下载数(次)
10
总被引数(次)
27612
论文1v1指导