作者:
原文服务方: 计算机测量与控制       
摘要:
在实际工业过程中预测控制算法应用广泛,但是对于多变量预测控制算法其参数较多,且各个参数之间相互耦合,故整定其参数比较复杂,鉴于此提出一种基于改进粒子群算法的预测控制参数优化算法;该算法的基本思想是将生物寄生行为机制引入到粒子群优化算法中,形成双种群粒子群优化算法,使用该改进粒子群算法对多变量预测控制算法的参数进行离线优化,从而确定预测控制算法参数的最优取值;最后,将文章算法用于冷热水系统液位和温度的控制,并通过仿真将该算法与标准粒子群优化算法相比较,仿真结果表明使用该算法对多变量预测控制的参数进行优化整定时,系统的阶跃响应具有抗干扰性能好、超调量小、调节时间短等优点.
推荐文章
基于改进粒子群算法的隐式广义预测控制
隐式广义预测控制
粒子群算法
滚动优化
自适应迁徙机制
基于改进粒子群算法的烧结配料预测模型
配料优化
粒子群算法
BP神经网络
惯性权重
基于改进粒子群算法的中药提取过程PID优化控制
粒子群算法
中药提取
PID控制
参数稳定域
基于邻域思想的改进粒子群优化算法
粒子群优化
邻域
群智能
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进粒子群优化算法的预测控制
来源期刊 计算机测量与控制 学科
关键词 预测控制 标准粒子群优化 参数优化 多变量 耦合
年,卷(期) 2018,(5) 所属期刊栏目 控制技术
研究方向 页码范围 81-85
页数 5页 分类号 TP273
字数 语种 中文
DOI 10.16526/j.cnki.11-4762/tp.2018.05.021
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 姜苏英 宝鸡文理学院电子电气工程学院 6 4 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (42)
共引文献  (20)
参考文献  (12)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(5)
  • 参考文献(0)
  • 二级参考文献(5)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(2)
  • 参考文献(1)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(5)
  • 参考文献(0)
  • 二级参考文献(5)
2010(5)
  • 参考文献(0)
  • 二级参考文献(5)
2011(8)
  • 参考文献(3)
  • 二级参考文献(5)
2012(3)
  • 参考文献(1)
  • 二级参考文献(2)
2013(2)
  • 参考文献(1)
  • 二级参考文献(1)
2014(6)
  • 参考文献(3)
  • 二级参考文献(3)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
预测控制
标准粒子群优化
参数优化
多变量
耦合
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机测量与控制
月刊
1671-4598
11-4762/TP
大16开
北京市海淀区阜成路甲8号
1993-01-01
出版文献量(篇)
0
总下载数(次)
0
总被引数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导