原文服务方: 湖南大学学报(自然科学版)       
摘要:
针对粒子群优化算法易于陷入局部最优解并存在早熟收敛的问题,提出了一种基于双子群的改进粒子群优化算法(TS-IPSO),通过2组搜索方向相反的主、辅子群之间的相互协同,扩大搜索范围,借鉴遗传算法的杂交机制,并采用惯性权值的非线性递减策略,加快算法的收敛速度和提高粒子的搜索能力,降低了算法陷入局部极值的风险.实验结果表明该算法较标准PSO算法提高了全局搜索能力和收敛速度,改善了优化性能.
推荐文章
一种基于子群变异的粒子群优化算法
早熟收敛
粒子群优化算法
随机定向振荡式搜索
子群
变异
多模态函数优化
一种改进的粒子群优化算法
粒子群算法
收敛速度
搜索能力
一种改进的粒子群优化算法
粒子集
优化算法
轨迹信息
惯性权重
一种改进的粒子群算法
粒子群算法
极值
惯性权重
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种基于双子群的改进粒子群优化算法
来源期刊 湖南大学学报(自然科学版) 学科
关键词 收敛性 粒子群优化算法 子群 杂交机制 遗传算法
年,卷(期) 2011,(1) 所属期刊栏目
研究方向 页码范围 84-88
页数 分类号 TP18
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张英杰 湖南大学计算机与通信学院 55 555 14.0 21.0
2 李亮 湖南大学计算机与通信学院 5 63 4.0 5.0
3 罗春松 湖南大学计算机与通信学院 2 38 2.0 2.0
4 张英豪 1 23 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (13)
共引文献  (293)
参考文献  (5)
节点文献
引证文献  (23)
同被引文献  (45)
二级引证文献  (51)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(3)
  • 参考文献(2)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(1)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2012(5)
  • 引证文献(4)
  • 二级引证文献(1)
2013(4)
  • 引证文献(4)
  • 二级引证文献(0)
2014(4)
  • 引证文献(4)
  • 二级引证文献(0)
2015(5)
  • 引证文献(4)
  • 二级引证文献(1)
2016(9)
  • 引证文献(2)
  • 二级引证文献(7)
2017(12)
  • 引证文献(2)
  • 二级引证文献(10)
2018(16)
  • 引证文献(2)
  • 二级引证文献(14)
2019(16)
  • 引证文献(1)
  • 二级引证文献(15)
2020(3)
  • 引证文献(0)
  • 二级引证文献(3)
研究主题发展历程
节点文献
收敛性
粒子群优化算法
子群
杂交机制
遗传算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
湖南大学学报(自然科学版)
月刊
1674-2974
43-1061/N
16开
1956-01-01
chi
出版文献量(篇)
4988
总下载数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导