原文服务方: 计算机应用研究       
摘要:
在传统的线性递减惯性权重(LDW)粒子群算法的基础上,提出一种新的引入粒子密度因子的粒子群算法.该算法根据粒子平均适应度值和社会最优适应度值,采用径向基函数形式来度量粒子群在最优值附近的聚集程度.在进化过程中,当密度因子大于一定值时,在LDW惯性权重因子中加入扰动项,使粒子群重新散开,从而跳出局部极值,避免算法出现早熟现象.基于Benchmark函数库的仿真实验表明,该算法一定程度上避免了算法过早收敛,尤其是在高维和多极值情况下性能明显优于传统PSO算法.
推荐文章
一种改进的粒子群优化算法
粒子群算法
收敛速度
搜索能力
一种改进的粒子群优化算法
粒子集
优化算法
轨迹信息
惯性权重
一种基于双子群的改进粒子群优化算法
收敛性
粒子群优化算法
子群
杂交机制
遗传算法
一种改进的粒子群算法
粒子群算法
极值
惯性权重
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种引入密度因子的改进粒子群优化算法
来源期刊 计算机应用研究 学科
关键词 粒子群优化 密度因子 线性递减惯性权重
年,卷(期) 2011,(8) 所属期刊栏目 算法研究探讨
研究方向 页码范围 2828-2830
页数 分类号 TP301
字数 语种 中文
DOI 10.3969/j.issn.1001-3695.2011.08.007
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 何明一 西北工业大学电子信息学院 122 1497 22.0 33.0
2 高全华 长安大学理学院 16 78 6.0 8.0
3 孙锋利 西北工业大学电子信息学院 4 16 2.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (7)
共引文献  (410)
参考文献  (3)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
粒子群优化
密度因子
线性递减惯性权重
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用研究
月刊
1001-3695
51-1196/TP
大16开
1984-01-01
chi
出版文献量(篇)
21004
总下载数(次)
0
总被引数(次)
238385
论文1v1指导