钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
首页
论文降重
免费查重
学术期刊
任务中心
登录
文献导航
学科分类
>
综合
工业技术
科教文艺
医药卫生
基础科学
经济财经
社会科学
农业科学
哲学政法
社会科学II
哲学与人文科学
社会科学I
经济与管理科学
工程科技I
工程科技II
医药卫生科技
信息科技
农业科技
数据库索引
>
中国科学引文数据库
工程索引(美)
日本科学技术振兴机构数据库(日)
文摘杂志(俄)
科学文摘(英)
化学文摘(美)
中国科技论文统计与引文分析数据库
中文社会科学引文索引
科学引文索引(美)
中文核心期刊
cscd
ei
jst
aj
sa
ca
cstpcd
cssci
sci
cpku
默认
篇关摘
篇名
关键词
摘要
全文
作者
作者单位
基金
分类号
搜索文章
搜索思路
钛学术文献服务平台
\
学术期刊
\
工业技术期刊
\
一般工业技术期刊
\
中国图象图形学报期刊
\
多任务分段紧凑特征的车辆检索方法
多任务分段紧凑特征的车辆检索方法
作者:
何霞
汤一平
王丽冉
袁公萍
陈朋
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取
深度哈希算法
车辆检索
多任务
跨模态检索
卷积神经网络
摘要:
目的 随着公共安全领域中大规模图像监控及视频数据的增长以及智能交通的发展,车辆检索有着极其重要的应用价值.针对已有车辆检索中自动化和智能化水平低、难以获取精确的检索结果等问题,提出一种多任务分段紧凑特征的车辆检索方法,有效利用车辆基本信息的多样性和关联性实现实时检索.方法 首先,利用相关任务之间的联系提高检索精度和细化图像特征,因此构造了一种多任务深度卷积网络分段学习车辆不同属性的哈希码,将图像语义和图像表示相结合,并采用最小化图像编码使学习到的车辆的不同属性特征更具有鲁棒性;然后,选用特征金字塔网络提取车辆图像的实例特征并利用局部敏感哈希再排序方法对提取到的特征进行检索;最后,针对无法获取查询车辆目标图像的特殊情况,采用跨模态辅助检索方法进行检索.结果 提出的检索方法在3个公开数据集上均优于目前主流的检索方法,其中在CompCars数据集上检索精度达到0.966,在VehicleID数据集上检索精度提升至0.862.结论 本文提出的多任务分段紧凑特征的车辆检索方法既能得到最小化图像编码及图像实例特征,还可在无法获取目标检索图像信息时进行跨模态检索,通过实验对比验证了方法的有效性.
暂无资源
收藏
引用
分享
推荐文章
基于深度特征编码的两级车辆检索方法
车辆检索
深度卷积神经网络
特征提取
两级检索策略
相似性度量
基于多任务卷积神经网络的轨道车辆螺栓异常检测方法
多任务卷积神经网络
螺栓异常
图像对比
临近空间多任务规划求解方法
临近空间信息系统
多任务智能规划
ε-理想解
ε-最优理想解
一种面向片上系统的多任务映射方法
片上系统
现场可编程门阵列
映射
多任务
内容分析
文献信息
引文网络
相关学者/机构
相关基金
期刊文献
内容分析
关键词云
关键词热度
相关文献总数
(/次)
(/年)
文献信息
篇名
多任务分段紧凑特征的车辆检索方法
来源期刊
中国图象图形学报
学科
工学
关键词
深度哈希算法
车辆检索
多任务
跨模态检索
卷积神经网络
年,卷(期)
2018,(12)
所属期刊栏目
图像分析和识别
研究方向
页码范围
1801-1812
页数
12页
分类号
TP391.4
字数
9042字
语种
中文
DOI
五维指标
作者信息
序号
姓名
单位
发文数
被引次数
H指数
G指数
1
汤一平
浙江工业大学信息工程学院
108
966
16.0
24.0
3
陈朋
浙江工业大学信息工程学院
41
112
6.0
9.0
4
王丽冉
浙江工业大学信息工程学院
7
12
2.0
3.0
5
何霞
浙江工业大学信息工程学院
7
12
2.0
3.0
6
袁公萍
浙江工业大学信息工程学院
13
67
4.0
8.0
传播情况
被引次数趋势
(/次)
(/年)
引文网络
引文网络
二级参考文献
(35)
共引文献
(7)
参考文献
(11)
节点文献
引证文献
(0)
同被引文献
(0)
二级引证文献
(0)
1997(2)
参考文献(1)
二级参考文献(1)
2001(2)
参考文献(1)
二级参考文献(1)
2004(1)
参考文献(0)
二级参考文献(1)
2005(2)
参考文献(0)
二级参考文献(2)
2008(1)
参考文献(0)
二级参考文献(1)
2009(2)
参考文献(0)
二级参考文献(2)
2010(4)
参考文献(0)
二级参考文献(4)
2011(1)
参考文献(0)
二级参考文献(1)
2012(5)
参考文献(0)
二级参考文献(5)
2013(6)
参考文献(1)
二级参考文献(5)
2014(4)
参考文献(1)
二级参考文献(3)
2015(11)
参考文献(3)
二级参考文献(8)
2016(2)
参考文献(1)
二级参考文献(1)
2017(2)
参考文献(2)
二级参考文献(0)
2018(1)
参考文献(1)
二级参考文献(0)
2018(1)
参考文献(1)
二级参考文献(0)
引证文献(0)
二级引证文献(0)
研究主题发展历程
节点文献
深度哈希算法
车辆检索
多任务
跨模态检索
卷积神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国图象图形学报
主办单位:
中国科学院遥感与数字地球研究所
中国图象图形学学会
北京应用物理与计算数学研究所
出版周期:
月刊
ISSN:
1006-8961
CN:
11-3758/TB
开本:
大16开
出版地:
北京9718信箱
邮发代号:
82-831
创刊时间:
1996
语种:
chi
出版文献量(篇)
5906
总下载数(次)
17
期刊文献
相关文献
1.
基于深度特征编码的两级车辆检索方法
2.
基于多任务卷积神经网络的轨道车辆螺栓异常检测方法
3.
临近空间多任务规划求解方法
4.
一种面向片上系统的多任务映射方法
5.
多任务模式电推进技术
6.
实时多任务嵌入系统的实现
7.
基于消息驱动的多任务操作机制
8.
实时多任务系统可调度性工程评估方法研究
9.
基于多任务深度特征提取及 MKPCA 特征融合的语音情感识别
10.
基于BERT模型的多任务法律案件智能判决方法
11.
实时监控系统多任务调控策略的设计与实现
12.
基于遗传算法的水下航行器制导系统多任务调度方法研究
13.
基于多任务学习的自然图像分类研究
14.
水下航行器控制系统实时多任务调度
15.
一种新的嵌入式系统实时多任务调度方法
推荐文献
钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
首页
论文降重
免费查重
学术期刊
任务中心
登录
根据相关规定,获取原文需跳转至原文服务方进行注册认证身份信息
完成下面三个步骤操作后即可获取文献,阅读后请
点击下方页面【继续获取】按钮
钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
原文合作方
继续获取
获取文献流程
1.访问原文合作方请等待几秒系统会自动跳转至登录页,首次访问请先注册账号,填写基本信息后,点击【注册】
2.注册后进行实名认证,实名认证成功后点击【返回】
3.检查邮箱地址是否正确,若错误或未填写请填写正确邮箱地址,点击【确认支付】完成获取,文献将在1小时内发送至您的邮箱
*若已注册过原文合作方账号的用户,可跳过上述操作,直接登录后获取原文即可
点击
【获取原文】
按钮,跳转至合作网站。
首次获取需要在合作网站
进行注册。
注册并实名认证,认证后点击
【返回】按钮。
确认邮箱信息,点击
【确认支付】
, 订单将在一小时内发送至您的邮箱。
*
若已经注册过合作网站账号,请忽略第二、三步,直接登录即可。
期刊分类
期刊(年)
期刊(期)
期刊推荐
一般工业技术
交通运输
军事科技
冶金工业
动力工程
化学工业
原子能技术
大学学报
建筑科学
无线电电子学与电信技术
机械与仪表工业
水利工程
环境科学与安全科学
电工技术
石油与天然气工业
矿业工程
自动化技术与计算机技术
航空航天
轻工业与手工业
金属学与金属工艺
中国图象图形学报2022
中国图象图形学报2021
中国图象图形学报2020
中国图象图形学报2019
中国图象图形学报2018
中国图象图形学报2017
中国图象图形学报2016
中国图象图形学报2015
中国图象图形学报2014
中国图象图形学报2013
中国图象图形学报2012
中国图象图形学报2011
中国图象图形学报2010
中国图象图形学报2009
中国图象图形学报2008
中国图象图形学报2007
中国图象图形学报2006
中国图象图形学报2005
中国图象图形学报2004
中国图象图形学报2003
中国图象图形学报2002
中国图象图形学报2001
中国图象图形学报2000
中国图象图形学报1999
中国图象图形学报1998
中国图象图形学报2018年第9期
中国图象图形学报2018年第8期
中国图象图形学报2018年第7期
中国图象图形学报2018年第6期
中国图象图形学报2018年第5期
中国图象图形学报2018年第4期
中国图象图形学报2018年第3期
中国图象图形学报2018年第2期
中国图象图形学报2018年第12期
中国图象图形学报2018年第11期
中国图象图形学报2018年第10期
中国图象图形学报2018年第1期
关于我们
用户协议
隐私政策
知识产权保护
期刊导航
免费查重
论文知识
钛学术官网
按字母查找期刊:
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
其他
联系合作 广告推广: shenyukuan@paperpass.com
京ICP备2021016839号
营业执照
版物经营许可证:新出发 京零 字第 朝220126号