支持向量分类器的两种分类模型是超平面和超球体,前者在有重叠类别的数据集上表现不佳,后者存在过适应问题.为此,本文提出了双效分类思想,在训练分类器过程中同时学习类间差异信息及类内特征信息,以克服上述问题并提高分类性能.进而,提出了具体实现算法,支持向量双效分类器(Doubled-Informed classifier based on Support vectors,DISV).DISV为各类生成收缩远离球,并基于此定义决策函数.收缩远离球的球面穿过类内密集分布区,并保持与其他类的最大远离.DISV辅以训练子集抽取策略和参数自适应调整策略以降低算法代价.实验表明,双效分类思想有效,其在心脏肥大数据集上的诊断结果优于同类算法.