作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了提高路面裂纹检测的效率以及精度, 将增强卷积神经网络引入路面裂纹图像识别中.首先, 采用线性灰度变换对原始图像进行预处理, 减少噪声对识别的影响.接着经过结构设计, 算法训练以及实验样本测试几个步骤后, 建立了路面裂纹识别模型.最终通过在Matlab实验显示, 建立的识别模型能够有效地对路面裂纹进行识别, 识别率可达92.8%.实验结果表明相比于其他算法, 本算法具有效率高、结果准确等优势, 能够满足工程需求.
推荐文章
基于卷积神经网络的目标检测研究综述
卷积神经网络
目标检测
深度学习
基于卷积神经网络的肺炎检测系统
卷积神经网络
胸部X光影像
肺炎诊断
图像预处理
VGG
特征提取
基于卷积神经网络的乳腺疾病检测算法
卷积神经网络
特征融合
空间金字塔池化
尺度无关
乳腺疾病检测
基于卷积神经网络的行人目标检测系统设计
卷积神经网络
行人目标
检测系统
CNN框架
目标传感器
训练文件
访问接口
复用加速结构
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于增强卷积神经网络的路面裂纹检测
来源期刊 电脑与电信 学科 工学
关键词 卷积神经网络 裂纹检测 图像处理
年,卷(期) 2018,(11) 所属期刊栏目 应用技术与研究
研究方向 页码范围 54-56
页数 3页 分类号 TP391
字数 1923字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李奂谌 安徽理工大学电气与信息工程学院 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (79)
共引文献  (93)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(8)
  • 参考文献(0)
  • 二级参考文献(8)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(6)
  • 参考文献(0)
  • 二级参考文献(6)
2010(5)
  • 参考文献(1)
  • 二级参考文献(4)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(7)
  • 参考文献(1)
  • 二级参考文献(6)
2013(8)
  • 参考文献(0)
  • 二级参考文献(8)
2014(8)
  • 参考文献(0)
  • 二级参考文献(8)
2015(10)
  • 参考文献(0)
  • 二级参考文献(10)
2016(7)
  • 参考文献(4)
  • 二级参考文献(3)
2017(3)
  • 参考文献(2)
  • 二级参考文献(1)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
卷积神经网络
裂纹检测
图像处理
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑与电信
月刊
1008-6609
44-1606/TN
大16开
广州市连新路171号国际科技中心B108室
1995
chi
出版文献量(篇)
8962
总下载数(次)
13
总被引数(次)
9565
论文1v1指导