基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
飞机检测是遥感图像分析领域的研究热点,现有检测方法的检测流程分为多步,难以进行整体优化,并且对于飞机密集区域或背景复杂区域的检测精度较低.针对以上问题,该文提出一种端到端的检测方法MDSSD来提高检测精度.该方法基于单一网络目标多尺度检测框架(SSD),以一个密集连接卷积网络(DenseNet)作为基础网络提取特征,后面连接一个由多个卷积层构成的子网络对目标进行检测和定位.该方法融合了多层次特征信息,同时设计了一系列不同长宽比的候选框,以实现不同尺度飞机的检测.该文的检测方法完全摒弃了候选框提取阶段,将所有检测流程整合在一个网络中,更加简洁有效.实验结果表明,在多种复杂场景的遥感图像中,该方法能够达到较高的检测精度.
推荐文章
基于全卷积神经网络的遥感图像海面目标检测
YOLOv3
全卷积神经网络
遥感图像
目标检测
基于深度卷积神经网络的图像检索算法研究
图像检索
卷积神经网络
特征提取
深度学习
基于卷积神经网络的目标检测研究综述
卷积神经网络
目标检测
深度学习
基于深度神经网络的遥感图像飞机目标检测
遥感图像
目标检测
密度聚类
卷积神经网络
像素级标签
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度卷积神经网络的遥感图像飞机目标检测方法
来源期刊 电子与信息学报 学科 工学
关键词 遥感图像处理 飞机检测 密集连接卷积网络
年,卷(期) 2018,(11) 所属期刊栏目 论文
研究方向 页码范围 2684-2690
页数 7页 分类号 TP753
字数 4191字 语种 中文
DOI 10.11999/JEIT180117
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (26)
共引文献  (24)
参考文献  (8)
节点文献
引证文献  (15)
同被引文献  (38)
二级引证文献  (1)
1968(1)
  • 参考文献(0)
  • 二级参考文献(1)
1981(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(2)
  • 参考文献(1)
  • 二级参考文献(1)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(3)
  • 参考文献(1)
  • 二级参考文献(2)
2013(2)
  • 参考文献(1)
  • 二级参考文献(1)
2014(2)
  • 参考文献(1)
  • 二级参考文献(1)
2015(2)
  • 参考文献(0)
  • 二级参考文献(2)
2016(4)
  • 参考文献(1)
  • 二级参考文献(3)
2017(3)
  • 参考文献(3)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(10)
  • 引证文献(10)
  • 二级引证文献(0)
2020(6)
  • 引证文献(5)
  • 二级引证文献(1)
研究主题发展历程
节点文献
遥感图像处理
飞机检测
密集连接卷积网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子与信息学报
月刊
1009-5896
11-4494/TN
大16开
北京市北四环西路19号
2-179
1979
chi
出版文献量(篇)
9870
总下载数(次)
11
总被引数(次)
95911
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导