基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对遥感图像飞机检测中存在的背景复杂和目标尺度变化大等问题,提出基于深度神经网络的遥感图像飞机目标检测模型DC-DNN.利用图像底层特征制作像素级标签完成全卷积神经网络(FCN)模型训练,将FCN模型与DBSCAN密度聚类算法相结合选取飞机目标的自适应候选区域,并基于VGG-16网络提取候选区域高层特征以获取飞机目标检测框,同时通过检测框抑制算法剔除重叠框和误检框,得到最终的飞机目标检测结果.实验结果表明,DC-DNN模型对于遥感图像飞机目标检测的准确率、召回率和F1值分别为95.78%、98.98%和0.973 5,相比WS-DNN、R-FCN等模型具有更好的检测性能和泛化能力.
推荐文章
基于全卷积神经网络的遥感图像海面目标检测
YOLOv3
全卷积神经网络
遥感图像
目标检测
模糊神经网络在图像目标检测中的应用
红外图像
微弱目标
自适应
目标检测
动态模糊神经网络
基于卷积神经网络的遥感图像去噪算法
图像去噪
卷积神经网络
遥感图像
深度学习
基于深度卷积神经网络的遥感影像目标检测
深度卷积神经网络
遥感影像目标检测
区域卷积神经网络
深度学习
TensorFlow框架
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度神经网络的遥感图像飞机目标检测
来源期刊 计算机工程 学科 工学
关键词 遥感图像 目标检测 密度聚类 卷积神经网络 像素级标签
年,卷(期) 2020,(7) 所属期刊栏目 图形图像处理
研究方向 页码范围 268-276
页数 9页 分类号 TP181
字数 6594字 语种 中文
DOI 10.19678/j.issn.1000-3428.0057070
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李文斌 河北地质大学信息工程学院 22 42 4.0 5.0
2 何冉 河北地质大学信息工程学院 3 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (103)
共引文献  (40)
参考文献  (16)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(3)
  • 参考文献(1)
  • 二级参考文献(2)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(9)
  • 参考文献(1)
  • 二级参考文献(8)
2014(10)
  • 参考文献(1)
  • 二级参考文献(9)
2015(19)
  • 参考文献(2)
  • 二级参考文献(17)
2016(18)
  • 参考文献(2)
  • 二级参考文献(16)
2017(26)
  • 参考文献(2)
  • 二级参考文献(24)
2018(9)
  • 参考文献(5)
  • 二级参考文献(4)
2019(2)
  • 参考文献(1)
  • 二级参考文献(1)
2020(3)
  • 参考文献(0)
  • 二级参考文献(3)
2020(3)
  • 参考文献(0)
  • 二级参考文献(3)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
遥感图像
目标检测
密度聚类
卷积神经网络
像素级标签
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程
月刊
1000-3428
31-1289/TP
大16开
上海市桂林路418号
4-310
1975
chi
出版文献量(篇)
31987
总下载数(次)
53
总被引数(次)
317027
相关基金
河北省自然科学基金
英文译名:
官方网址:
项目类型:
学科类型:
论文1v1指导