基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
随着移动互联网的快速发展,针对移动手机端的钓鱼攻击越来越普遍.提出一种基于改进的朴素贝叶斯算法的移动平台钓鱼网站检测方案.首先,针对在数据收集过程中会出现空缺值的问题,通过K-means算法对缺失的属性值进行填充,以获得完整的数据集;其次,针对朴素贝叶斯算法计算概率时会出现过低估计的问题,将概率进行适当放大,以解决结果下溢的问题;第三,针对朴素贝叶斯算法容易忽略属性之间的关联性问题,对不同的属性值进行了加权处理,以提高检测的正确率;最后,根据实际情况中钓鱼网站出现概率较小的情况,通过调整钓鱼网站与可信网站的概率比值,以此来进一步提高检测的正确率.实验部署在Android 5.0操作系统上.实验结果表明,改进后的朴素贝叶斯算法能够在较短的时间内有效地检测出针对手机端的钓鱼攻击.
推荐文章
基于改进随机森林算法的钓鱼网站检测方法研究
钓鱼检测
关联规则
特征分区
数据空间
基于特征选择与集成学习的钓鱼网站检测方法
钓鱼网站
随机森林
信息增益率
特征选择
钓鱼网站的鉴别方法与防范策略研究
钓鱼网站
网络安全
钓鱼邮件
反钓鱼
网络钓鱼网站的技术原理与抵御措施
网络钓鱼网站
黑客
安全防护
警惕性
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种基于改进的朴素贝叶斯算法的Android钓鱼网站检测方案
来源期刊 计算机工程与科学 学科 工学
关键词 Android平台 网络钓鱼 朴素贝叶斯 移动安全
年,卷(期) 2018,(8) 所属期刊栏目 计算机网络与信息安全
研究方向 页码范围 1420-1428
页数 9页 分类号 TP393.08
字数 8823字 语种 中文
DOI 10.3969/j.issn.1007-130X.2018.08.012
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘锋 安徽大学计算机科学与技术学院 77 392 11.0 16.0
2 朱二周 安徽大学计算机科学与技术学院 19 157 7.0 12.0
3 马刚 安徽大学计算机科学与技术学院 1 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (28)
共引文献  (110)
参考文献  (10)
节点文献
引证文献  (2)
同被引文献  (2)
二级引证文献  (0)
1973(1)
  • 参考文献(0)
  • 二级参考文献(1)
1974(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(4)
  • 参考文献(2)
  • 二级参考文献(2)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(10)
  • 参考文献(3)
  • 二级参考文献(7)
2013(3)
  • 参考文献(1)
  • 二级参考文献(2)
2014(4)
  • 参考文献(3)
  • 二级参考文献(1)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Android平台
网络钓鱼
朴素贝叶斯
移动安全
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与科学
月刊
1007-130X
43-1258/TP
大16开
湖南省长沙市开福区德雅路109号国防科技大学计算机学院
42-153
1973
chi
出版文献量(篇)
8622
总下载数(次)
11
总被引数(次)
59030
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导