作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对互联网规模的不断扩大,网络服务更容易向入侵者和攻击者暴露信息,且攻击手段日趋复杂,提出了简化粒子群优化(SPSO)结合自组织映射(SOM)的网络入侵检测方法.根据特征判别力,使用PCA方法进行选择特征,生成非相关性特征过滤数据集噪声和低方差值特征.通过SOM与高斯混合模型(GAMM)混合方法来模拟正常模式与异常模式,测量每个网络单元的激活概率以检测所有高频率攻击的精确值,并运用概率SOM均值对特征空间进行分类,在此过程中,运用简化粒子群优化(SPSO)算法从分类搜索当前解的邻域内找到更优的解.基于KDDCUP99数据集搭建仿真测试平台,实验结果表明,提出的方法对常见的网络攻击表现出了良好的性能,具有更高的入侵检测准确率(ACC).
推荐文章
粒子群算法和SVM的网络入侵检测
粒子群算法
支持向量机
网络入侵
检测算法
基于粒子群优化SOM神经网络的轴系多振动故障诊断
粒子群算法
神经网络
振动
故障诊断
粒子群特征优选的SVDD 入侵检测研究
入侵检测
支持向量数据描述
粒子群算法
基于粒子群优化的异常入侵检测算法的研究
粒子群算法
动态聚类分析
入侵检测
适应度函数
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 简化粒子群优化结合SOM的网络入侵检测方法
来源期刊 微型电脑应用 学科 工学
关键词 自组织映射 入侵检测系统 简化粒子群优化 KDDCUP99 高斯混合模型
年,卷(期) 2018,(5) 所属期刊栏目 基金项目
研究方向 页码范围 29-31,39
页数 4页 分类号 TP393
字数 4069字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王红梅 新疆工程学院计算机工程系 21 137 4.0 11.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (88)
共引文献  (155)
参考文献  (12)
节点文献
引证文献  (2)
同被引文献  (19)
二级引证文献  (1)
1971(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(5)
  • 参考文献(0)
  • 二级参考文献(5)
2002(4)
  • 参考文献(0)
  • 二级参考文献(4)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(5)
  • 参考文献(0)
  • 二级参考文献(5)
2007(8)
  • 参考文献(0)
  • 二级参考文献(8)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(6)
  • 参考文献(0)
  • 二级参考文献(6)
2010(7)
  • 参考文献(1)
  • 二级参考文献(6)
2011(7)
  • 参考文献(1)
  • 二级参考文献(6)
2012(8)
  • 参考文献(0)
  • 二级参考文献(8)
2013(7)
  • 参考文献(0)
  • 二级参考文献(7)
2014(3)
  • 参考文献(0)
  • 二级参考文献(3)
2015(15)
  • 参考文献(4)
  • 二级参考文献(11)
2016(7)
  • 参考文献(3)
  • 二级参考文献(4)
2017(3)
  • 参考文献(3)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(2)
  • 引证文献(2)
  • 二级引证文献(0)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
自组织映射
入侵检测系统
简化粒子群优化
KDDCUP99
高斯混合模型
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
微型电脑应用
月刊
1007-757X
31-1634/TP
16开
上海市华山路1954号上海交通大学铸锻楼314室
4-506
1984
chi
出版文献量(篇)
6963
总下载数(次)
20
总被引数(次)
28091
论文1v1指导