作者:
原文服务方: 机械传动       
摘要:
针对实际工况中难于提取齿轮箱故障特征的问题,根据轮廓波变换的全局纹理和局部二元模式的局部纹理特性,提出了一种基于振动信号时频图像的故障特征提取方法.首先,利用小波变换将振动信号变换到时频域并得到其时频灰度图像;然后,对该灰度图像进行轮廓波变换,得到低频和高频子带部分,提取低频子带的均值和标准差以及高频子带各层的能量均值作为一部分特征向量;同时,对该时频灰度图像进行局部二元模式的特征值提取并得到另一部分特征向量,将两部分特征向量进行组合连接得到最终的特征向量;最后,利用支持向量机对齿轮箱不同程度故障进行分类测试,实验结果表明了该方法的有效性,为机械设备的模式识别提供了一种方法.
推荐文章
基于Hilbert-Huang变换时频谱特征的齿轮箱故障模式分类
齿轮箱故障
模式分类
Hilbert-Huang变换(HHT)
傅里叶变换
小波变换
Holbert-小波变换的齿轮箱故障诊断
:齿轮箱振动响应信号
小波变换
希尔伯特变换
故障诊断
基于EEMD和Hilbert变换的齿轮箱故障诊断
齿轮箱
EEMD
Hilbert变换
IMF
基于MED-SVM的齿轮箱故障诊断方法
最小熵反褶积
支持向量机
特征提取
交叉验证
故障诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于轮廓波变换和局部二元模式的齿轮箱故障分类方法研究
来源期刊 机械传动 学科
关键词 轮廓波 局部二元模式 时频图像 支持向量机 模式识别
年,卷(期) 2018,(12) 所属期刊栏目 开发应用
研究方向 页码范围 166-169,183
页数 5页 分类号
字数 语种 中文
DOI 10.16578/j.issn.1004.2539.2018.12.031
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (26)
共引文献  (62)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1966(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(4)
  • 参考文献(0)
  • 二级参考文献(4)
1996(3)
  • 参考文献(1)
  • 二级参考文献(2)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(5)
  • 参考文献(0)
  • 二级参考文献(5)
2001(4)
  • 参考文献(0)
  • 二级参考文献(4)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(5)
  • 参考文献(3)
  • 二级参考文献(2)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
轮廓波
局部二元模式
时频图像
支持向量机
模式识别
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
机械传动
月刊
1004-2539
41-1129/TH
大16开
河南省郑州市科学大道149号
1977-01-01
中文
出版文献量(篇)
6089
总下载数(次)
0
总被引数(次)
31469
论文1v1指导