原文服务方: 计算机测量与控制       
摘要:
针对BP神经网络训练学习速度慢、容易陷入局部极小值的缺陷,利用LM算法融合高斯-牛顿法和梯度下降法优点的快速性,充分利用遗传算法全局随机搜索强的优势,构建了三层5-6-1型的GA-LM-BP神经网络结构,优化BP神经网络的初始权值和阀值,减少了BP神经网络陷入局部极小值的几率;通过对锂离子电池数据进行了实验,结果表明了该方法预测的有效性.
推荐文章
基于卷积神经网络与双向长短时融合的锂离子电池剩余使用寿命预测
锂离子电池
剩余使用寿命预测
融合神经网络
一维卷积神经网络
双向长短期记忆
基于神经网络与UKF结合的锂离子电池组SOC估算方法
锂离子电池组
动力能源
无迹卡尔曼滤波器
神经网络
高级车辆仿真器
荷电状态
基于GA-BP神经网络的锂离子电池SOC估计
锂离子电池
荷电状态
BP神经网络
遗传算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于GA-LM-BP神经网络的锂离子电池预测研究
来源期刊 计算机测量与控制 学科
关键词 BP神经网络 锂离子电池 预测
年,卷(期) 2018,(7) 所属期刊栏目 测试与故障诊断
研究方向 页码范围 44-47,108
页数 5页 分类号 TP273
字数 语种 中文
DOI 10.16526/j.cnki.11-4762/tp.2018.07.010
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 尹明 海军工程大学电子工程学院 22 51 4.0 6.0
2 刘爱军 海军工程大学电子工程学院 5 7 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (41)
共引文献  (43)
参考文献  (14)
节点文献
引证文献  (1)
同被引文献  (1)
二级引证文献  (0)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(9)
  • 参考文献(2)
  • 二级参考文献(7)
2010(5)
  • 参考文献(0)
  • 二级参考文献(5)
2011(8)
  • 参考文献(1)
  • 二级参考文献(7)
2012(5)
  • 参考文献(0)
  • 二级参考文献(5)
2013(6)
  • 参考文献(3)
  • 二级参考文献(3)
2014(4)
  • 参考文献(4)
  • 二级参考文献(0)
2015(3)
  • 参考文献(3)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
BP神经网络
锂离子电池
预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机测量与控制
月刊
1671-4598
11-4762/TP
大16开
北京市海淀区阜成路甲8号
1993-01-01
出版文献量(篇)
0
总下载数(次)
0
总被引数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导