原文服务方: 信息与控制       
摘要:
针对锂离子电池剩余使用寿命(remaining useful life,RUL)传统预测方法的精确度与稳定性较低等问题,融合卷积神经网络(convolutional neural network,CNN)和双向长短期记忆(bidirectional long short-term memory,BiLSTM)神经网络的特点,设计一种锂离子电池剩余使用寿命预测方法。为了充分使用电池数据的时间序列特性,使用一维卷积神经网络(one-dimensional convolutional neural network,1D CNN)提取锂离子电池容量数据深层特征,利用BiLSTM神经网络的记忆功能保留数据中的重要信息,预测电池RUL变化趋势。通过采用NASA (National Aeronautics and Space Administration)的锂离子电池数据,与1D CNN模型、LSTM模型、BiLSTM模型、1D CNN-LSTM模型进行预测对比。经实验结果表明,1D CNN-BiLSTM具有更高的预测稳定性和精度。
推荐文章
基于IGA-MRVR的锂离子电池剩余使用寿命预测
电动汽车
锂电池
剩余使用寿命
多核相关向量回归算法
改进遗传算法优化
预测
锂离子电池状态估计与剩余寿命预测方法综述
锂离子电池
荷电状态(SOC)估算
健康度(SOH)估算
剩余寿命(RUL)预测
基于卷积神经网络与双向长短时记忆网络组合模型的短时交通流预测
智能交通
短时交通流预测
深度学习
CNN
BiLSTM
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于卷积神经网络与双向长短时融合的锂离子电池剩余使用寿命预测
来源期刊 信息与控制 学科 工学
关键词 锂离子电池 剩余使用寿命预测 融合神经网络 一维卷积神经网络 双向长短期记忆
年,卷(期) 2022,(3) 所属期刊栏目 论文与报告
研究方向 页码范围 318-329,360
页数 12页 分类号 TM912
字数 语种 中文
DOI 10.13976/j.cnki.xk.2022.1205
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
锂离子电池
剩余使用寿命预测
融合神经网络
一维卷积神经网络
双向长短期记忆
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信息与控制
双月刊
1002-0411
21-1138/TP
大16开
1972-01-01
chi
出版文献量(篇)
2891
总下载数(次)
0
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导