针对短文本具有的稀疏性、不规范性、主题不明确性等相关特点,提出一种基于SVM的高维混合特征模型.首先介绍了兼顾语义和情感的6类特征:表情符号特征、词聚类特征、词性标注特征、n-gram特征、否定特征和情感词典.其中主要介绍了该6类特征的概念、抽取方式以及输出形式;其次在第六届中文倾向性分析评测(COAE2014)为基础的数据集上,采用5折交叉的方法对该模型进行了有效性验证,其平均准确率为84.69%、平均召回率为83.13%,而平均F1值为83.90%;接着探讨了SVM惩罚系数对实验的影响;最后将该模型与一步三分类方法、Recursive Auto Encoder、Doc2vec做了对比分析,结果表明提出的模型对短文本情感分类更有效.