基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
现有目标检测算法在复杂大场景下多目标检测的精度和实时性难以平衡,为此,受深度神经网络卷积核形态启发,模仿了人眼视觉机理,改进了基于深度学习的目标检测框架,即单向多框检测器(SSD),提出了多目标检测框架——自适应感知SSD,将其专用于复杂大交通场景多目标检测.设计了由多形态、彩色Gabor构成的特征卷积核库,训练筛选最优特征提取卷积核组替换原有网络的低级卷积核组,从而提高检测精度;将单图像检测框架与卷积长短期记忆网络结合,通过瓶颈-长短期记忆层提炼传播帧间的特征映射,实现网络帧级信息的时序关联,降低计算成本,从而实现对视频中受强干扰影响目标的追踪识别;同时加入自适应阈值策略,降低漏警率和虚警率.实验结果表明,相比于其他基于深度学习的目标检测框架,各类目标识别的平均准确率提高了9%~16%,平均准确率均值提高了14%~21%,多目标检测率提高了21%~36%,检测帧率达到32 frame·s-1,实现了算法精度与实时性的平衡,取得较好的检测识别效果.
推荐文章
复杂大交通场景弱小目标检测技术
机器视觉
深度学习
神经网络
交通场景多目标检测
增强学习
自适应
交通场景中多目标的检测与跟踪
目标检测
最近邻法
跟踪
匹配
基于递归神经网络的视频多目标检测技术
机器视觉
深度学习
递归神经网络
卡尔曼滤波
视频多目标检测
卷积神经网络
基于改进SSD的视频烟火检测算法
烟火检测
轻量化
SSD
GhostNet
Concat
特征融合
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进SSD的交通大场景多目标检测
来源期刊 光学学报 学科 物理学
关键词 机器视觉 生物视觉 深度学习 卷积神经网络 Gabor卷积核 递归神经网络
年,卷(期) 2018,(12) 所属期刊栏目 机器视觉
研究方向 页码范围 213-223
页数 11页 分类号 O436
字数 语种 中文
DOI 10.3788/AOS201838.1215003
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (138)
共引文献  (1000)
参考文献  (15)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1900(1)
  • 参考文献(0)
  • 二级参考文献(1)
1943(1)
  • 参考文献(0)
  • 二级参考文献(1)
1958(1)
  • 参考文献(0)
  • 二级参考文献(1)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1972(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(2)
  • 参考文献(1)
  • 二级参考文献(1)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(3)
  • 参考文献(0)
  • 二级参考文献(3)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(3)
  • 参考文献(0)
  • 二级参考文献(3)
1990(2)
  • 参考文献(0)
  • 二级参考文献(2)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(8)
  • 参考文献(0)
  • 二级参考文献(8)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(10)
  • 参考文献(0)
  • 二级参考文献(10)
2010(9)
  • 参考文献(1)
  • 二级参考文献(8)
2011(7)
  • 参考文献(1)
  • 二级参考文献(6)
2012(8)
  • 参考文献(0)
  • 二级参考文献(8)
2013(11)
  • 参考文献(1)
  • 二级参考文献(10)
2014(10)
  • 参考文献(0)
  • 二级参考文献(10)
2015(13)
  • 参考文献(0)
  • 二级参考文献(13)
2016(18)
  • 参考文献(1)
  • 二级参考文献(17)
2017(14)
  • 参考文献(5)
  • 二级参考文献(9)
2018(3)
  • 参考文献(3)
  • 二级参考文献(0)
2018(3)
  • 参考文献(3)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
机器视觉
生物视觉
深度学习
卷积神经网络
Gabor卷积核
递归神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
光学学报
半月刊
0253-2239
31-1252/O4
大16开
上海市嘉定区清河路390号(上海800-211信箱)
4-293
1981
chi
出版文献量(篇)
11761
总下载数(次)
35
总被引数(次)
130170
论文1v1指导