基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
随着社会信息化的发展,信息检索成为了影响人们日常生活和生产工作的重要技术,同时人们对信息检索技术的要求也越来越高[1].为了改进传统检索方式,基于卷积神经网络CNNs (Convolutional Neural Networks)提出一种语义信息检索模型,对句子卷积特征和词聚特征进行映射训练,达到搜索近似语句的目的.实验表明基于卷积神经网络的近似语义检索模型相比传统检索模型有助于提高信息检索的质量.
推荐文章
基于深度卷积神经网络的图像检索算法研究
图像检索
卷积神经网络
特征提取
深度学习
基于卷积神经网络的灯具商品图像检索
卷积神经网络
商品图片搜索
YOLO算法
多标签分类任务
融合空洞卷积神经网络的语义SLAM研究
语义SLAM
空洞卷积神经网络
语义标签
动态点剔除
地图构建
结果分析
基于卷积神经网络的目标检测研究综述
卷积神经网络
目标检测
深度学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于卷积神经网络的跨领域语义信息检索研究
来源期刊 计算机应用与软件 学科 工学
关键词 卷积神经网络 信息检索 词向量 SVM 快速聚类
年,卷(期) 2018,(8) 所属期刊栏目 数据工程
研究方向 页码范围 73-78
页数 6页 分类号 TP391
字数 5380字 语种 中文
DOI 10.3969/j.issn.1000-386x.2018.08.012
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 黄青松 昆明理工大学信息工程与自动化学院 91 265 9.0 12.0
3 刘利军 昆明理工大学信息工程与自动化学院 77 196 7.0 10.0
4 冯旭鹏 昆明理工大学教育技术与网络中心 34 77 5.0 7.0
7 李亚星 昆明理工大学信息工程与自动化学院 5 24 3.0 4.0
8 王兆凯 昆明理工大学信息工程与自动化学院 4 21 3.0 4.0
9 谢先章 昆明理工大学信息工程与自动化学院 1 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (74)
共引文献  (245)
参考文献  (12)
节点文献
引证文献  (2)
同被引文献  (7)
二级引证文献  (0)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(8)
  • 参考文献(2)
  • 二级参考文献(6)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(7)
  • 参考文献(0)
  • 二级参考文献(7)
2011(5)
  • 参考文献(0)
  • 二级参考文献(5)
2012(6)
  • 参考文献(2)
  • 二级参考文献(4)
2013(5)
  • 参考文献(3)
  • 二级参考文献(2)
2014(3)
  • 参考文献(1)
  • 二级参考文献(2)
2015(8)
  • 参考文献(0)
  • 二级参考文献(8)
2016(3)
  • 参考文献(0)
  • 二级参考文献(3)
2017(10)
  • 参考文献(4)
  • 二级参考文献(6)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
卷积神经网络
信息检索
词向量
SVM
快速聚类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用与软件
月刊
1000-386X
31-1260/TP
大16开
上海市愚园路546号
4-379
1984
chi
出版文献量(篇)
16532
总下载数(次)
47
总被引数(次)
101489
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导