作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
K-means算法是一种采用距离作为相似性评价指标的聚类算法,其快速简洁的特点在异常检测场景中有一定的应用价值.但是,传统的K-means聚类算法在选取初始中心和度量相似性上有一定缺陷.针对传统的K-means算法中存在的问题,本文对原有的方法进行了改进.第一,在初始化聚类中心时选取了一种优化的方法作为初始聚类中心,替代原有的随机选择方法以减少计算量和迭代次数.第二,采用基于信息熵属性加权的样本相似性度量来进一步精确样本差异.实验过程中,针对异常检测数据含有冗余特征,对样本数据做了冗余特征过滤,实验结果表明改进之后的方法较传统的K-means算法有更好的检测效果.
推荐文章
基于聚类中心优化的k-means最佳聚类数确定方法
k-means聚类
初始聚类中心
样本密度
聚类数
K-means聚类算法初始中心选择研究
K-means聚类算法
K个聚类中心
密度参数
K-means算法改进
基于变异的k-means聚类算法
聚类
mk-means算法
变异
K-means聚类算法的研究
数据挖掘
K-means算法
初始聚类中心
聚类分析
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于特征选择的K-means聚类异常检测方法
来源期刊 网络安全技术与应用 学科
关键词 K-means算法 异常检测 聚类 冗余特征
年,卷(期) 2018,(4) 所属期刊栏目 安全模型、算法与编程
研究方向 页码范围 25-26,30
页数 3页 分类号
字数 2549字 语种 中文
DOI 10.3969/j.issn.1009-6833.2018.04.013
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李娜 四川大学计算机学院 117 516 12.0 18.0
2 樊蓉 四川大学计算机学院 2 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (30)
共引文献  (258)
参考文献  (5)
节点文献
引证文献  (3)
同被引文献  (17)
二级引证文献  (0)
1948(1)
  • 参考文献(0)
  • 二级参考文献(1)
1975(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(1)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(3)
  • 参考文献(1)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(1)
  • 二级参考文献(1)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(3)
  • 参考文献(1)
  • 二级参考文献(2)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(3)
  • 参考文献(0)
  • 二级参考文献(3)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(2)
  • 引证文献(2)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
K-means算法
异常检测
聚类
冗余特征
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
网络安全技术与应用
月刊
1009-6833
11-4522/TP
大16开
北京市
2-741
2001
chi
出版文献量(篇)
13340
总下载数(次)
61
总被引数(次)
33730
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导