基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对肺结节特征复杂且不明显,难以精确诊断出胸片中是否含有肺结节的问题,提出将深度神经网络应用于肺结节分类识别之中.首先通过将胸片灰度一致化,减少由于不同设备导致胸片亮度与灰度的差异;其次采用不同的数据扩增方法使得深度卷积神经网络可以充分提取肺结节的特征;最后通过改进的神经网络架构对肺结节进行分类识别.提出的算法有效地避免了在对胸片图像进行分割时造成图像特征部分丢失的现象,同时克服了由于胸片图像的复杂造成的肺结节特征不明显的缺点.最终通过实验研究证明胸片肺结节分类识别的平均准确率达到84.2%,在医学胸片肺结节的分类识别领域上具有一定的应用价值.
推荐文章
基于深度卷积神经网络的车标分类
深度学习
神经网络
车标分类
图像识别
基于深度卷积神经网络的车型识别研究
深度学习
卷积神经网络
支持向量机
高速公路
车型识别
基于深度卷积神经网络的织物花型分类
深度卷积神经网络
织物花型
图像分析
基于卷积神经网络的细胞识别
细胞识别
卷积神经网络
深度学习
池化层
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 深度卷积神经网络胸片肺结节分类识别研究
来源期刊 计算机工程与应用 学科 工学
关键词 卷积神经网络 胸片 肺结节 图像分类
年,卷(期) 2018,(24) 所属期刊栏目 图形图像处理
研究方向 页码范围 176-181
页数 6页 分类号 TP39
字数 4740字 语种 中文
DOI 10.3778/j.issn.1002-8331.1806-0382
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陈寿宏 桂林电子科技大学电子工程与自动化学院 37 107 5.0 8.0
2 马峻 桂林电子科技大学电子工程与自动化学院 19 83 5.0 9.0
3 柳馨雨 桂林电子科技大学电子工程与自动化学院 1 3 1.0 1.0
4 康怀强 桂林电子科技大学电子工程与自动化学院 2 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (201)
共引文献  (335)
参考文献  (17)
节点文献
引证文献  (3)
同被引文献  (11)
二级引证文献  (0)
1959(1)
  • 参考文献(0)
  • 二级参考文献(1)
1961(1)
  • 参考文献(0)
  • 二级参考文献(1)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(2)
  • 参考文献(0)
  • 二级参考文献(2)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(2)
  • 参考文献(0)
  • 二级参考文献(2)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(3)
  • 参考文献(0)
  • 二级参考文献(3)
1997(3)
  • 参考文献(0)
  • 二级参考文献(3)
1998(4)
  • 参考文献(1)
  • 二级参考文献(3)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(4)
  • 参考文献(1)
  • 二级参考文献(3)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(5)
  • 参考文献(0)
  • 二级参考文献(5)
2004(6)
  • 参考文献(0)
  • 二级参考文献(6)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(11)
  • 参考文献(2)
  • 二级参考文献(9)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(3)
  • 参考文献(1)
  • 二级参考文献(2)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(6)
  • 参考文献(1)
  • 二级参考文献(5)
2013(11)
  • 参考文献(1)
  • 二级参考文献(10)
2014(9)
  • 参考文献(2)
  • 二级参考文献(7)
2015(25)
  • 参考文献(0)
  • 二级参考文献(25)
2016(61)
  • 参考文献(2)
  • 二级参考文献(59)
2017(36)
  • 参考文献(4)
  • 二级参考文献(32)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(2)
  • 引证文献(2)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
卷积神经网络
胸片
肺结节
图像分类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导