基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
模糊K-modes算法是一种有效的针对分类数据的聚类方法,但算法性能非常依赖于初始中心的选择.针对模糊聚类算法对初始中心敏感这一问题,提出一种改进的基于距离和离群点检测的初始中心选择的方法.首先,通过增大初始中心选择过程中距离所占的比重,使所选择的初始中心点更具有分布性;然后,运用基于距离的离群点检测技术对初始中心点进行进一步筛选,避免离群点成为初始中心.对比实验结果表明,改进方法提高了分类数据初始中心选择的成功率,并具有较高的准确率.
推荐文章
基于数据分布特性的聚类中心初始化方法
初始聚类中心
K-均值算法
网格化
局部最大值
距离优化
数据挖掘中聚类初始化方法的优化研究
数据挖掘
聚类
聚类有效性
聚类初始化
分类属性
一种有效的K-means聚类中心初始化方法
K-均值算法
基于密度
初始聚类中心
最大最小距离
最大距离积
改进的说话人聚类初始化和GMM的多说话人识别
多说话人识别
改进的聚类初始化
高斯混合模型
平均类纯度
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 改进的分类数据聚类中心初始化方法
来源期刊 计算机应用 学科 工学
关键词 模糊K-modes算法 距离 密度 初始聚类中心 离群点检测
年,卷(期) 2018,(z1) 所属期刊栏目 数据科学与技术
研究方向 页码范围 73-76
页数 4页 分类号 TP181
字数 5064字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 唐雁 西南大学计算机与信息科学学院 37 294 8.0 15.0
2 王思杰 西南大学计算机与信息科学学院 1 4 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (17)
节点文献
引证文献  (4)
同被引文献  (15)
二级引证文献  (0)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(3)
  • 参考文献(3)
  • 二级参考文献(0)
2010(2)
  • 参考文献(2)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(4)
  • 引证文献(4)
  • 二级引证文献(0)
研究主题发展历程
节点文献
模糊K-modes算法
距离
密度
初始聚类中心
离群点检测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用
月刊
1001-9081
51-1307/TP
大16开
成都237信箱
62-110
1981
chi
出版文献量(篇)
20189
总下载数(次)
40
总被引数(次)
209512
论文1v1指导