基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
传统k最近邻算法(k-Nearest Neighbor,kNN)作为一种非参数化分类技术在数据分析中具有广泛的应用,但该算法具有较多的冗余计算,致使处理数据时需要花费较多的计算时间.目前大量的研究都集中在数据的预处理阶段,通过为数据建立模型降低kNN查询的计算量.提出一种基于对象数量的宽度加权聚类kNN算法(NOWCkNN),该算法中数据集首先以全局宽度进行聚类,每个生成的子集群根据其对象数量递归计算其宽度的权值,然后算法根据其权值的大小和调和系数调节宽度值,最后生成不同宽度大小的集群用于kNN查询.这不仅减少了算法的聚类时间,还能平衡产生集群的大小,减少迭代次数,使三角不等式修剪率达到最大.实验结果表明,NOWCkNN算法与现有工作相比在各个维度的数据集中有较好的性能,尤其是在高维度、数据量较大的数据集中有更高的修剪效率.
推荐文章
基于加权多宽度高斯核函数的聚类算法
加权多宽度高斯核
聚类
SVC
高斯核
基于质心的样本加权聚类算法
k-means算法
聚类
样本加权
质心
基于加权联合矩阵的演化聚类算法
静态聚类
演化聚类
联合矩阵
加权法
时间平滑
扩展性
基于加权矩阵聚类的Web日志挖掘算法
数据挖掘
Web日志挖掘
加权矩阵聚类
多标记传播算法
用户聚类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于对象数量的宽度加权聚类kNN算法
来源期刊 计算机工程与应用 学科 工学
关键词 聚类 k-最近邻 三角不等式 宽度加权 高维数据
年,卷(期) 2018,(19) 所属期刊栏目 热点与综述
研究方向 页码范围 1-9
页数 9页 分类号 TP181
字数 8149字 语种 中文
DOI 10.3778/j.issn.1002-8331.1808-0208
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陈辉 广东工业大学计算机学院 35 118 6.0 8.0
2 李嘉兴 广东工业大学计算机学院 2 4 2.0 2.0
4 关凯胜 广东工业大学计算机学院 1 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (43)
共引文献  (33)
参考文献  (16)
节点文献
引证文献  (2)
同被引文献  (10)
二级引证文献  (0)
1967(1)
  • 参考文献(0)
  • 二级参考文献(1)
1975(1)
  • 参考文献(1)
  • 二级参考文献(0)
1977(1)
  • 参考文献(1)
  • 二级参考文献(0)
1986(1)
  • 参考文献(1)
  • 二级参考文献(0)
1991(2)
  • 参考文献(2)
  • 二级参考文献(0)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(4)
  • 参考文献(1)
  • 二级参考文献(3)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(3)
  • 参考文献(2)
  • 二级参考文献(1)
2009(5)
  • 参考文献(2)
  • 二级参考文献(3)
2010(3)
  • 参考文献(2)
  • 二级参考文献(1)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(5)
  • 参考文献(0)
  • 二级参考文献(5)
2014(5)
  • 参考文献(2)
  • 二级参考文献(3)
2015(6)
  • 参考文献(0)
  • 二级参考文献(6)
2016(6)
  • 参考文献(0)
  • 二级参考文献(6)
2017(9)
  • 参考文献(2)
  • 二级参考文献(7)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
聚类
k-最近邻
三角不等式
宽度加权
高维数据
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导