基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
过去几十年中,人们越来越关注满足特殊结构方程度量的黎曼流形的研究。其中一个最重要的例子是Ricci流和Ricci孤立子。Ricci流是研究黎曼流形最有力的工具之一,它在Hamilton和Perelman证明Poincaré猜想过程中起着关键作用,并且广泛用于研究流形的拓扑结构、几何性质和其它复杂结构。Ricci流方程本身作为偏微分方程的研究也十分重要,它给出了关键度量的规范方法。关于Ricci孤立子有两个重要的研究方向,一是研究黎曼流形的Ricci孤立子结构对拓扑结构的影响,另一个是研究它在几何学中的影响。本文,我们将归纳总结Ricci孤立子曲率及势函数的估计结果。
推荐文章
平行Ricci曲率黎曼流形中具有平行中曲率向量的子流形
平行Ricci曲率
平行中曲率向量
积分不等式
局部对称空间中的紧致极小子流形的Ricci曲率
局部对称
Ricci曲率
极小子流形
全测地
拟爱因斯坦度量的势函数估计
拟爱因斯坦度量
势函数
黎曼流形
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Ricci孤立子的曲率及势函数
来源期刊 理论数学 学科 数学
关键词 Ricci孤立子 曲率 势函数
年,卷(期) 2019,(1) 所属期刊栏目
研究方向 页码范围 1-11
页数 11页 分类号 O1
字数 语种
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 高翔 46 71 5.0 7.0
2 李金楠 5 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Ricci孤立子
曲率
势函数
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
理论数学
其它
2160-7583
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
797
总下载数(次)
2
总被引数(次)
0
论文1v1指导