基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Flower Image Classification is a Fine-Grained Classification problem.The main difficulty of Fine-Grained Classification is the large inter-class similarity and the inner-class difference.In this paper,we propose a new algorithm based on Saliency Map and PCANet to overcome the difficulty.This algorithm mainly consists of two parts:flower region selection,flower feature learning.In first part,we combine saliency map with gray-scale map to select flower region.In second part,we use the flower region as input to train the PCANet which is a simple deep learning network for learning flower feature automatically,then a 102-way softmax layer that follow the PCANet achieve classification.Our approach achieves 84.12%accuracy on Oxford 17 Flowers dataset.The results show that a combination of Saliency Map and simple deep learning network PCANet can applies to flower image classification problem.
推荐文章
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 A Flower Image Classification Algorithm Based on Saliency Map and PCANet
来源期刊 通讯和计算机:中英文版 学科 工学
关键词 SALIENCY MAP PCANet DEEP LEARNING FLOWER IMAGE classification
年,卷(期) 2019,(1) 所属期刊栏目
研究方向 页码范围 14-24
页数 11页 分类号 TP3
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
SALIENCY
MAP
PCANet
DEEP
LEARNING
FLOWER
IMAGE
classification
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
通讯和计算机:中英文版
双月刊
1548-7709
武汉洪山区卓刀泉北路金桥花园C座4楼
出版文献量(篇)
1576
总下载数(次)
2
论文1v1指导