作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Artificial intelligence has permeated all aspects of our lives today. However, to make AI behave like real AI, the critical bottleneck lies in the speed of computing. Quantum computers employ the peculiar and unique properties of quantum states such as superposition, entanglement, and interference to process information in ways that classical computers cannot. As a new paradigm of computation, quantum computers are capable of performing tasks intractable for classical processors, thus providing a quantum leap in AI research and making the development of real AI a possibility. In this regard, quantum machine learning not only enhances the classical machine learning approach but more importantly it provides an avenue to explore new machine learning models that have no classical counterparts. The qubit-based quantum computers cannot naturally represent the continuous variables commonly used in machine learning, since the measurement outputs of qubit-based circuits are generally discrete. Therefore, a continuous-variable (CV) quantum architecture based on a photonic quantum computing model is selected for our study. In this work, we employ machine learning and optimization to create photonic quantum circuits that can solve the contextual multi-armed bandit problem, a problem in the domain of reinforcement learning, which demonstrates that quantum reinforcement learning algorithms can be learned by a quantum device.
推荐文章
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Training a Quantum Neural Network to Solve the Contextual Multi-Armed Bandit Problem
来源期刊 自然科学期刊(英文) 学科 医学
关键词 Continuous-Variable QUANTUM Computers QUANTUM Machine LEARNING QUANTUM Reinforcement LEARNING CONTEXTUAL Multi-Armed BANDIT PROBLEM
年,卷(期) 2019,(1) 所属期刊栏目
研究方向 页码范围 17-27
页数 11页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Continuous-Variable
QUANTUM
Computers
QUANTUM
Machine
LEARNING
QUANTUM
Reinforcement
LEARNING
CONTEXTUAL
Multi-Armed
BANDIT
PROBLEM
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
自然科学期刊(英文)
月刊
2150-4091
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
1054
总下载数(次)
0
总被引数(次)
0
论文1v1指导