基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
采用一种基于多分辨率卷积神经网络的火焰检测算法对真实场景中的火焰目标进行检测.该算法以BN_Inception网络为基础架构,采用不同分辨率的神经网络互补学习复杂场景中火焰的多尺度视觉特征,同时该算法重点关注检测目标场景的背景环境、局部目标和整体布局等特征.使用该算法在构造的涵盖大多数真实场景的火焰数据集上进行测试,实验结果表明,提出的算法能够取得更好的检测效果,并在实际场景中得到了有效验证.
推荐文章
面向螺丝锁附序列的多分辨率融合卷积神经网络
螺丝
锁附故障
多分辨率融合
卷积神经网络
类别加权交叉熵
基于卷积神经网络的视频图像超分辨率重建方法
视频
超分辨率重建
卷积神经网络
深度学习
基于改进卷积神经网络的图像超分辨率算法研究
低分辨率
超分辨率
卷积神经网络
图像处理
复原
基于深度复合卷积神经网络的低分辨率单影像复原
超低分辨率图像
卷积神经网络
单影像复原
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于多分辨率卷积神经网络的火焰检测
来源期刊 郑州大学学报(工学版) 学科 工学
关键词 多分辨率卷积神经网络 火焰检测 深度学习 弱监督定位
年,卷(期) 2019,(5) 所属期刊栏目
研究方向 页码范围 79-83
页数 5页 分类号 TP183
字数 3547字 语种 中文
DOI 10.13705/j.issn.1671-6833.2019.05.022
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 周兵 郑州大学信息工程学院 48 309 9.0 15.0
2 黄文锋 10 13 2.0 3.0
3 孙燚 郑州大学信息工程学院 9 12 2.0 3.0
4 徐珊珊 郑州大学信息工程学院 3 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (77)
共引文献  (43)
参考文献  (12)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(5)
  • 参考文献(0)
  • 二级参考文献(5)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(6)
  • 参考文献(0)
  • 二级参考文献(6)
2010(7)
  • 参考文献(1)
  • 二级参考文献(6)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(8)
  • 参考文献(0)
  • 二级参考文献(8)
2013(12)
  • 参考文献(2)
  • 二级参考文献(10)
2014(2)
  • 参考文献(1)
  • 二级参考文献(1)
2015(9)
  • 参考文献(3)
  • 二级参考文献(6)
2016(4)
  • 参考文献(1)
  • 二级参考文献(3)
2017(6)
  • 参考文献(1)
  • 二级参考文献(5)
2018(3)
  • 参考文献(3)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
多分辨率卷积神经网络
火焰检测
深度学习
弱监督定位
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
郑州大学学报(工学版)
双月刊
1671-6833
41-1339/T
大16开
河南省郑州市科学大道100号
36-232
1980
chi
出版文献量(篇)
3118
总下载数(次)
0
总被引数(次)
21814
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导