基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
本文主要研究了由截尾α-稳定过程驱动的种群模型。在本文中我们首先限制稳定过程的跳跃高度,然后在一些假设下,证明带负跳的种群模型的全局正解仍然存在;同时我们利用Khasminskii引理及Lyapunov函数得到了该模型满足平稳分布和指数遍历的条件。此外,我们还给出了当α-4σαCα/9(2-α)<0时,该模型将趋于灭绝。
推荐文章
Lévy过程驱动的金融混沌模型的稳定性研究
Lévy过程
金融混沌模型
解的存在唯一性
解的P阶有界性
渐近稳定性
一类截尾稳定过程驱动的SIS传染病模型
谱正α-稳定过程
平稳分布
指数遍历性
灭绝性
截尾试验下疲劳寿命分布的极值模型
截尾试验
极值统计
疲劳寿命
寿命分布
一类离散等级结构种群模型的稳定性
个体等级
种群模型
Perron-Frobenius定理
Lyapunov函数
稳定性
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 由截尾稳定过程驱动的种群模型
来源期刊 理论数学 学科 数学
关键词 截尾α-稳定过程 种群模型 平稳分布 指数遍历 灭绝性
年,卷(期) 2019,(1) 所属期刊栏目
研究方向 页码范围 36-45
页数 10页 分类号 O21
字数 语种
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 童金英 东华大学数学系 5 2 1.0 1.0
2 燕莹莹 东华大学数学系 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
截尾α-稳定过程
种群模型
平稳分布
指数遍历
灭绝性
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
理论数学
其它
2160-7583
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
797
总下载数(次)
2
总被引数(次)
0
论文1v1指导