基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为提高预测回采工作面瓦斯涌出量预测精度,采用主成分分析法(PCA)与粒子群算法(PSO)及最小二乘支持向量机(LS-SVM)相结合的方法,在样本数据的选择上吸取主成分分析数据降维的优势,使所选择的数据样本简洁并且更具代表性.充分利用支持向量机训练速度快、能够获得全局最优解且拥有良好泛化性的特点,将粒子群算法与之相结合,从而寻找最优参数.建立基于PCA和PSO-LS-SVM回采工作面瓦斯涌出量预测模型,并在实际中获得成功应用.研究结果表明:该预测模型预测的最大相对误差为2.35%,最小相对误差为0.30%,平均相对误差为1.28%,相较其他预测模型有着更强的泛化能力和更高的预测精度.
推荐文章
基于LSSVM与CPSO的瓦斯涌出量组合预测
瓦斯涌出量
非线性组合预测
最小二乘支持向量机,经典粒子群算法
基于径向基的瓦斯涌出量灰色预测模型
瓦斯涌出量
灰色预测
RBF
预测精度
综采工作面的瓦斯涌出规律及涌出量的预测
综采工作面
瓦斯源
瓦斯预测
瓦斯涌出
基于MPSO-RBF的瓦斯涌出量预测研究
RBF神经网络
改进的PSO算法
瓦斯预测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 PCA-PSO-LSSVM模型在瓦斯涌出量预测中的应用
来源期刊 辽宁工程技术大学学报(自然科学版) 学科 工学
关键词 主成分分析 最小二乘支持向量机 粒子群算法 数据降维 瓦斯涌出量
年,卷(期) 2019,(2) 所属期刊栏目
研究方向 页码范围 124-129
页数 6页 分类号 X936
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 邵良杉 189 1464 18.0 27.0
2 卢万杰 12 67 5.0 8.0
3 丰胜成 5 6 1.0 2.0
4 高振彪 3 6 1.0 2.0
5 孟庭儒 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (158)
共引文献  (117)
参考文献  (15)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(3)
  • 参考文献(0)
  • 二级参考文献(3)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(6)
  • 参考文献(0)
  • 二级参考文献(6)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(8)
  • 参考文献(0)
  • 二级参考文献(8)
2007(11)
  • 参考文献(0)
  • 二级参考文献(11)
2008(17)
  • 参考文献(0)
  • 二级参考文献(17)
2009(16)
  • 参考文献(0)
  • 二级参考文献(16)
2010(11)
  • 参考文献(0)
  • 二级参考文献(11)
2011(16)
  • 参考文献(2)
  • 二级参考文献(14)
2012(21)
  • 参考文献(1)
  • 二级参考文献(20)
2013(17)
  • 参考文献(2)
  • 二级参考文献(15)
2014(15)
  • 参考文献(2)
  • 二级参考文献(13)
2015(6)
  • 参考文献(4)
  • 二级参考文献(2)
2016(4)
  • 参考文献(1)
  • 二级参考文献(3)
2017(3)
  • 参考文献(1)
  • 二级参考文献(2)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
主成分分析
最小二乘支持向量机
粒子群算法
数据降维
瓦斯涌出量
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
辽宁工程技术大学学报(自然科学版)
月刊
1008-0562
21-1379/N
大16开
辽宁省阜新市
1979
chi
出版文献量(篇)
6319
总下载数(次)
12
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导