作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
常用的特征选择方法利用样本空间的整个区域提取最优的特征子集.与此相反,提出一种新的局部特征选择方法,即样本空间的每个区域都与各自不同的最优特征集相关联,这些特征集能够最优地适应样本空间的局部变化.同时,在求解最优特征集对应的子空间时,基于最近邻思想,提出了一种度量测试数据与各个类相似性的方法,用来对测试样本进行分类.提出的方法可以描述为线性规划优化问题,因此可以通过简单的凸优化来求解全局最优解.在3组真实数据集和3个主流的方法上进行的对比实验,结果证明了该算法的可行性和有效性.
推荐文章
基于多特征相似的用户兴趣推荐
用户兴趣
多特征相似性
个性化推荐
协同过滤
时间函数
基于视觉颜色感知——光学相似的图像去雾方法
视觉颜色感知
图像相似性
图像去雾
基于特征选择检验的交会数据相似度验证方法
无线电引信
半实物仿真
交会数据
相似度
特征选择检验
基于回归函数结合局部自相似的单帧图像超分辨率算法
完备字典
稀疏线性组合
超分辨率
单帧
局部自相似
局部回归
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于局部类相似的特征选择方法
来源期刊 吉林化工学院学报 学科 工学
关键词 局部特征选择 分类 最近邻搜索 线性规划
年,卷(期) 2019,(5) 所属期刊栏目
研究方向 页码范围 93-96
页数 4页 分类号 O212.1|TP18
字数 2587字 语种 中文
DOI 10.16039/j.cnki.cn22-1249.2019.05.022
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (9)
共引文献  (2)
参考文献  (7)
节点文献
引证文献  (2)
同被引文献  (5)
二级引证文献  (0)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(1)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(3)
  • 参考文献(1)
  • 二级参考文献(2)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
局部特征选择
分类
最近邻搜索
线性规划
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
吉林化工学院学报
月刊
1007-2853
22-1249/TQ
大16开
吉林市承德街45号
1984
chi
出版文献量(篇)
4578
总下载数(次)
15
总被引数(次)
13749
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导