基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The effect of treatment on patient’s outcome can easily be determined through the impact of the treatment on biological events. Observing the treatment for patients for a certain period of time can help in determining whether there is any change in the biomarker of the patient. It is important to study how the biomarker changes due to treatment and whether for different individuals located in separate centers can be clustered together since they might have different distributions. The study is motivated by a Bayesian non-parametric mixture model, which is more flexible when compared to the Bayesian Parametric models and is capable of borrowing information across different centers allowing them to be grouped together. To this end, this research modeled Biological markers taking into consideration the Surrogate markers. The study employed the nested Dirichlet process prior, which is easily peaceable on different distributions for several centers, with centers from the same Dirichlet process component clustered automatically together. The study sampled from the posterior by use of Markov chain Monte carol algorithm. The model is illustrated using a simulation study to see how it performs on simulated data. Clearly, from the simulation study it was clear that, the model was capable of clustering data into different clusters.
推荐文章
Groundwater quality assessment using multivariate analysis, geostatistical modeling, and water quali
Groundwater
Multivariate analysis
Geostatistical modeling
Geochemical modeling
Mineralization
Ordinary Kriging
Zircon saturation model in silicate melts: a review and update
Zircon
Zircon saturation
Model
Silicate melt
Mafic to silicic melts
Peraluminous to peralkaline compositions
Igneous rocks
Thermometer
Application ontology构建及SPARQL查询研究
本体
手机应用
简单协议和RDF查询语言
查询
本体描述语言
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Bayesian Non-Parametric Mixture Model with Application to Modeling Biological Markers
来源期刊 数据分析和信息处理(英文) 学科 数学
关键词 BAYESIAN NON-PARAMETRIC Nested DIRICHLET PROCESS BIOMARKER Clustering Surrogate MARKERS DIRICHLET PROCESS Markov Chain Monte Carlo
年,卷(期) 2019,(4) 所属期刊栏目
研究方向 页码范围 141-152
页数 12页 分类号 O17
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
BAYESIAN
NON-PARAMETRIC
Nested
DIRICHLET
PROCESS
BIOMARKER
Clustering
Surrogate
MARKERS
DIRICHLET
PROCESS
Markov
Chain
Monte
Carlo
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
数据分析和信息处理(英文)
季刊
2327-7211
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
106
总下载数(次)
0
总被引数(次)
0
论文1v1指导