基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Due to the difficulty that excessive feature dimension in fault diagnosis of rolling bearing will lead to the decrease of classification accuracy,a fault diagnosis method based on Xgboost algorithm feature extraction is proposed.When the Xgboost algorithm classifies features,it generates an order of importance of the input features.The time domain features were extracted from the vibration signal of the rolling bearing,the time-frequency features were formed by the singular value of the modal components that were decomposed by the variational mode decomposition.Firstly,the extracted time domain and time-frequency domain features were input into the support vector machine respectively to observe the fault diagnosis accuracy.Then,Xgboost algorithm was used to rank the importance of features and got the accuracy of fault diagnosis.Finally,important features were extracted and the extracted features were input into the support vector machine to observe the fault diagnosis accuracy.The result shows that the fault diagnosis accuracy of rolling bearing is improved after important feature extraction in time domain and time-frequency domain by Xgboost.
推荐文章
基于Feature的WEB GIS空间信息共享方案的研究
GIS
WEB GIS
FEATURE
空间信息共享
基于WOA-XGBoost模型的网络入侵检测
网络安全
入侵检测
异常行为检测
WOA-XGBoost
集成学习
融合协同过滤的XGBoost推荐算法
协同过滤
冷启动
XGBoost
推荐系统
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Application of Xgboost Feature Extraction in Fault Diagnosis of Rolling Bearing
来源期刊 机械工程(英文) 学科 数学
关键词 FAULT diagnosis ROLLING BEARING xgboost FEATURE extraction support VECTOR machine
年,卷(期) 2019,(2) 所属期刊栏目
研究方向 页码范围 1-7
页数 7页 分类号 O17
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
FAULT
diagnosis
ROLLING
BEARING
xgboost
FEATURE
extraction
support
VECTOR
machine
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
机械工程(英文)
不定期
2661-4448
重庆市渝北区赛迪路2号金山商业中心A座
出版文献量(篇)
29
总下载数(次)
0
总被引数(次)
0
论文1v1指导