原文服务方: 微电子学与计算机       
摘要:
针对人体行为识别过程中分类算法识别精度低和数据样本集的“维数灾难”问题,提出了基于行为识别的SPLDA降维算法.首先,利用SPLDA算法在原有样本协方差矩阵不变的情况下获取最重要的主分量,通过贪婪搜索方法得到多个投影向量;然后,通过更新类内散度矩阵获得最优转换矩阵;最后,将降维后的样本数据集通过XGBoost分类器进行最终的行为识别.实验结果表明,XGBoost分类器与随机森林算法相比,平均识别精度提高了2.66%,识别时间降低了0.52 s;SPLDA-XGB算法可以实现有效降维且比PCA算法、LDA算法、LPP算法、L-PCA算法与XGBoost分类器结合的识别算法具有更高的人体行为识别准确率.
推荐文章
基于多分类器组合的红外目标识别方法
红外探测
模式识别
多分类器组合
BP神经网络
决策融合
基于CHMMs的自适应行为识别方法
行为识别
耦合隐马尔可夫模型
加速度传感器
数据融合
基于智能手机传感器的基础行为识别方法研究
智能手机传感器
基础行为
主成分分析
决策树
支持向量机分类器
一种基于用户行为状态特征的流量识别方法
流量识别
用户行为
行为状态特征
主题模型
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于SPLDA降维和XGBoost分类器的行为识别方法研究
来源期刊 微电子学与计算机 学科
关键词 行为识别 SPLDA 投影向量 降维算法 分类
年,卷(期) 2019,(6) 所属期刊栏目
研究方向 页码范围 35-39
页数 5页 分类号 TP301.6
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王勇军 桂林电子科技大学电子工程与自动化学院 24 96 6.0 9.0
3 李智 桂林航天工业学院无人机遥测重点实验室 54 170 8.0 11.0
6 叶丹 桂林电子科技大学电子工程与自动化学院 1 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (20)
共引文献  (7)
参考文献  (6)
节点文献
引证文献  (1)
同被引文献  (8)
二级引证文献  (0)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(4)
  • 参考文献(2)
  • 二级参考文献(2)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(3)
  • 参考文献(1)
  • 二级参考文献(2)
2013(4)
  • 参考文献(0)
  • 二级参考文献(4)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(4)
  • 参考文献(1)
  • 二级参考文献(3)
2016(3)
  • 参考文献(1)
  • 二级参考文献(2)
2017(2)
  • 参考文献(1)
  • 二级参考文献(1)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
行为识别
SPLDA
投影向量
降维算法
分类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
微电子学与计算机
月刊
1000-7180
61-1123/TN
大16开
1972-01-01
chi
出版文献量(篇)
9826
总下载数(次)
0
总被引数(次)
59060
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导