原文服务方: 探测与控制学报       
摘要:
针对以往的红外目标模式识别方法无法区分坦克与铁板假目标的缺点,提出了基于多分类器组合的红外目标模式识别方法.该方法对红外图像的每行像素使用线性分类器和BP神经网络分类器进行识别,用与规则对两分类器的识别结果进行决策融合,得到每行像素的识别结果,然后对多行像素的识别结果使用多数票规则及或规则进行决策融合,得到最终识别结果,完成对坦克、背景和铁板假目标的区分.仿真结果表明:组合使用BP神经网络分类器和线性分类器,可提高系统识别能力,能较好地完成目标识别.
推荐文章
基于增强字典稀疏表示分类的SAR目标识别方法
合成孔径雷达
目标识别
增强字典
稀疏表示分类
基于模板匹配的前视红外目标识别方法
尺度空间
前视红外
目标识别
Hausdorff距离
基于D-S证据理论的红外小目标识别方法
证据理论
目标识别
信息融合
红外目标
基于多传感器数据融合的目标识别方法
目标识别
D-S理论
数据融合系统(DFS)
神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于多分类器组合的红外目标识别方法
来源期刊 探测与控制学报 学科
关键词 红外探测 模式识别 多分类器组合 BP神经网络 决策融合
年,卷(期) 2012,(2) 所属期刊栏目
研究方向 页码范围 61-66
页数 分类号 TJ431.6
字数 语种 中文
DOI 10.3969/j.issn.1008-1194.2012.02.013
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 董卫斌 4 8 2.0 2.0
2 郑少超 3 5 1.0 2.0
3 王正国 2 5 1.0 2.0
4 吴徐谦 2 5 1.0 2.0
5 罗来邦 5 16 3.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (20)
共引文献  (48)
参考文献  (13)
节点文献
引证文献  (4)
同被引文献  (21)
二级引证文献  (1)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(1)
  • 二级参考文献(0)
1992(1)
  • 参考文献(1)
  • 二级参考文献(0)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(3)
  • 参考文献(2)
  • 二级参考文献(1)
1998(2)
  • 参考文献(1)
  • 二级参考文献(1)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(4)
  • 参考文献(2)
  • 二级参考文献(2)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(2)
  • 参考文献(2)
  • 二级参考文献(0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(2)
  • 引证文献(2)
  • 二级引证文献(0)
2017(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
红外探测
模式识别
多分类器组合
BP神经网络
决策融合
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
探测与控制学报
双月刊
1008-1194
61-1316/TJ
16开
1979-01-01
chi
出版文献量(篇)
2424
总下载数(次)
0
论文1v1指导