基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
随着安卓恶意程序的数量的急剧增加,恶意程序检测已成为一个重要的研究课题.然而,目前许多研究表明,恶意程序的检测仍然需要改进,安卓的碎片问题和需要root权限,阻碍了这些方法的广泛使用.现有的杀毒程序依赖于需要实时更新的签名数据库,这无法检测出零日恶意程序.在本文中,我们提取了安卓程序中的特征,进行混合,选择集成算法中的DECORATE算法,并用WEKA工具辅助进行分类恶意程序的检测.该方法最终达到95.8%的检测精度,同时我们在真实的数据集上经过十折交叉验算实验及对比.
推荐文章
基于机器学习算法的Android恶意程序检测系统
随机森林
恶意代码检测
多类特征
安卓应用
机器学习
Android系统恶意程序检测技术研究
Android
安全问题
恶意程序检测
支持向量机
恶意程序的检测和删除
恶意程序
复制
检测
删除``
恶意程序检测算法的研究与实现
恶意程序
检测算法
恶意程度文件
检测误报率
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于集成学习的安卓恶意程序检测技术
来源期刊 天津理工大学学报 学科 工学
关键词 安卓恶意程序检测 静态检测 集成学习 DECORATE
年,卷(期) 2019,(4) 所属期刊栏目
研究方向 页码范围 43-46,57
页数 5页 分类号 TP391.4
字数 3400字 语种 中文
DOI 10.3969/j.issn.1673-095X.2019.04.010
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王春东 天津理工大学计算机科学与工程学院 68 388 11.0 17.0
2 李孔渤 天津理工大学计算机科学与工程学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (7)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
安卓恶意程序检测
静态检测
集成学习
DECORATE
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
天津理工大学学报
双月刊
1673-095X
12-1374/N
大16开
天津市西青区宾水西道391号
1984
chi
出版文献量(篇)
2405
总下载数(次)
4
总被引数(次)
13943
论文1v1指导