原文服务方: 控制理论与应用       
摘要:
本文将自动编码器(AE)特征提取方法和典型相关分析方法(CCA)有机结合,提出了一种联合驱动的质量监测模型及其质量相关的故障检测方法.首先,利用AE算法对输入样本进行无监督自动学习和重构,实现数据的特征提取和降维;其次,利用CCA算法实现特征与质量变量关联最大化,建立质量变量与特征变量的关系模型;根据监测模型的潜结构投影,构建T2统计量和SPE统计量及其相应控制限.将提出的方法用于分析带钢热连轧过程现场实际数据,结果表明,基于自动编码器-典型相关分析方法(AE-CCA)的质量监测方法能够准确的检测出故障,并且检测效果优于传统的核典型相关分析(KCCA)算法.
推荐文章
基于循环自动编码器的间歇过程故障监测
算法
动态建模
神经网络
LSTM
过程监测
循环自动编码器
基于降噪自动编码器及其改进模型的微博情感分析
降噪自动编码器
微博
情感分析
深度学习
稀疏和标签约束半监督自动编码器的分类算法
分类
稀疏约束
标签约束
自动编码器
极限学习机
基于深度自动编码器的机场安检人脸识别系统设计
人脸识别
Gabor小波
识别率
深度自动编码器
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 自动编码器与典型相关分析方法联合驱动的工业过程质量监测
来源期刊 控制理论与应用 学科
关键词 故障诊断 质量监测 典型相关分析方法(CCA) 自动编码器-典型相关分析方法(AE-CCA) 带钢热连轧
年,卷(期) 2019,(9) 所属期刊栏目 论文与报告
研究方向 页码范围 1493-1500
页数 8页 分类号
字数 语种 中文
DOI 10.7641/CTA.2019.80554
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 彭开香 北京科技大学自动化学院 61 500 14.0 19.0
2 董洁 北京科技大学自动化学院 23 237 8.0 15.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (38)
共引文献  (6)
参考文献  (13)
节点文献
引证文献  (1)
同被引文献  (4)
二级引证文献  (0)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(3)
  • 参考文献(0)
  • 二级参考文献(3)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(3)
  • 参考文献(1)
  • 二级参考文献(2)
2013(2)
  • 参考文献(1)
  • 二级参考文献(1)
2014(4)
  • 参考文献(0)
  • 二级参考文献(4)
2015(11)
  • 参考文献(4)
  • 二级参考文献(7)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(3)
  • 参考文献(2)
  • 二级参考文献(1)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
故障诊断
质量监测
典型相关分析方法(CCA)
自动编码器-典型相关分析方法(AE-CCA)
带钢热连轧
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
控制理论与应用
月刊
1000-8152
44-1240/TP
大16开
1984-01-01
chi
出版文献量(篇)
4979
总下载数(次)
0
总被引数(次)
72515
论文1v1指导