Problem statement: The method of non-destructive testing is needed in different aspects of geology, geomechanics and archeology, for instance: by testing the state of rock massifs in sault, kimberlites or rock shock mines, ancient archeological objects, or mapping for locating the wells drilling. The best method for solution these problems is based on using induction multi frequency electromagnetic field with use control sources on 3D planshet system of observation. Applied methods and design: Such method was developed at the Institute of Geophysics, Ural Branch of the Russian Academy of Sciences that allows its use to solve complex geological problems for mapping and monitoring the state of the environment. Its use allows the observation system to be used in such way that, on the one hand, it achieves flexible tunable detail of observations, and on the other hand, it organizes an input database that is close to the domain of definition of the inverse problem operator in the class of layered-block models with local hierarchical inclusions. This allows using regularization methods to obtain solutions that are in the class of equivalent, close to true. The specific possibilities of its use are determined by the technical side: the power of the excitation source, the sensitivity of the receiving system. Typical results: It had been developed a new method of mapping, processing and interpretation, realized in a set of programs that allow seeing the result of the searching structure of the environment in real time (that is after receiving some results during one day, we can see the results of the geoelectrical features of the structure and the state of that part of the environment). It had been suggested a three staged conception of interpretation that can be used not only for interpretation electromagnetic induction data and dynamic seismic data. Concluding note (Practical value/implications): In the considered case, this method contributed to the study of altered forms of kimberlitic bodies. The method underwent geo