作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
We consider, compare, and contrast various aspects of aerodynamic and ballistic flight. We compare the energy efficiency of aerodynamic level flight at a given altitude versus that of ballistic flight beginning and ending at this same altitude. We show that for flights short compared to Earth’s radius, aerodynamic level flight with lift-to-drag ratio L/D > 2?is more energy-efficient than ballistic flight, neglecting air resistance or drag in the latter. Smaller L/D suffices if air resistance in ballistic flight is not neglected. For a single circumnavigation of Earth, we show that aerodynamic flight with L/D > 4π is more energy-efficient than minimum-altitude circular-orbit ballistic spaceflight. We introduce the concept of gravitational scale height, which may in an auxiliary way be helpful in understanding this result. For flights traversing N circumnavigations of Earth, if then even minimum-altitude circular-orbit ballistic spaceflight is much more energy-efficient than aerodynamic flight because even at minimum circular-orbit spaceflight altitude air resistance is very small. For higher-altitude spaceflight air resistance is even smaller and the energy-efficiency advantage of spaceflight over aerodynamic flight traversing the same distance is therefore even more pronounced. We distinguish between the energy efficiency of flight per se and the energy efficiency of the engine that powers flight. Next we consider the effects of air density on aerodynamic level flight and provide a simplified view of drag and lift. We estimate the low-density/high-altitude limits of aerodynamic level flight (and for comparison also of balloons) in Earth’s and Mars’ atmospheres. Employing Mars airplanes and underwater airplanes on Earth (and hypo-thetically also on Mars) as examples, we consider aerodynamic level flight in rarefied and dense aerodynamic media, respectively. We also briefly discuss hydrofoils. We appraise the optimum range of air densities for aerodynamic level flight. We then consider flights of hand-thrown
推荐文章
趋优算子和Levy Flight混合的粒子群优化算法
趋优算子
智能优化算法
LevyFlight
粒子群优化算法
引入Lévy flight和萤火虫行为的鱼群算法
人工鱼群算法
萤火虫算法
Lévyflight搜索策略
行为模式
带有Lévy Flight机制的引力搜索算法
引力搜索算法(GSA)
Lévy Flight
惯性权重
基于Te mpered Lévy FIight随机游走模型的布谷鸟搜索算法
随机游走
搜索
布谷鸟算法
复杂网络
元启发式算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Aerodynamic versus Ballistic Flight
来源期刊 流体动力学(英文) 学科 航空航天
关键词 Aerodynamic FLIGHT BALLISTIC FLIGHT LIFT Drag Lift-to-Drag RATIO Air DENSITY Energy Efficiency
年,卷(期) 2019,(4) 所属期刊栏目
研究方向 页码范围 346-400
页数 55页 分类号 V21
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Aerodynamic
FLIGHT
BALLISTIC
FLIGHT
LIFT
Drag
Lift-to-Drag
RATIO
Air
DENSITY
Energy
Efficiency
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
流体动力学(英文)
季刊
2165-3852
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
302
总下载数(次)
0
总被引数(次)
0
论文1v1指导