智慧医疗技术的发展让我们不满足仅使用传统方法做医学研究.针对中文电子病历实体识别问题,设计了一种基于卷积神经网络结合条件随机场(convolutional neural network-conditional random field,CNN-CRF)的实体识别算法框架.为得到高质量的词向量,将标注实体加入词典进行分词,并将已标注和未标注文本作为语料,用word2vec工具对已分词文本进行无监督学习;为避免扩张卷积层数增加导致过拟合,采用迭代扩张卷积处理输入向量,并使用dropout随机丢弃一些连接;运用条件随机场对网络的分类结果进行修正.把该方法在中文电子病历上进行对比试验,从病历中提取出身体部位,疾病,症状,检查及治疗5类实体.实验结果表明,该方法能有效地辨别病历中的实体,其识别的准确率、召回率和f1值分别为90.01%,90.62%,90.31%,准确率和速率比传统方法都有一定提高.