基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
深度学习中处理不平衡问题的方法多为代价敏感和采样.该文在词向量迁移的基础上提出预训练任务选择方法.用利于小类别区分的预训练词向量来初始化目标模型,并结合均衡过采样充分利用样本信息保持模型在大类别上的精度,使模型提取的文本特征在大小类别上具有公平性,从特征层面实现了平衡效果.实验结果表明,在文本情绪分类任务中,对比过采样方法,该方法在大部分无严重过拟合情况下有更好的平衡效果.当存在较严重过拟合时,该方法在目标分类数为三时平衡效果显著,并通过实验验证了预训练方法可与代价敏感方法相结合提升平衡性能.
推荐文章
基于样本投影分布的平衡不平衡数据集分类
平衡不平衡数据集
样本投影分布
支持向量机
支持向量数据描述
基于支持向量机的不平衡数据分类算法的研究
Smote
黎曼几何
核函数
支持向量机
不平衡数据集上的文本分类特征选择新方法
不平衡数据集
文本分类
特征选择
正类
负类
不平衡数据集的分类方法研究
机器学习
不平衡数据
数据分类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于词向量预训练的不平衡文本情绪分类
来源期刊 中文信息学报 学科 工学
关键词 不平衡分类 情绪分类 均衡过采样 预训练词向量
年,卷(期) 2019,(5) 所属期刊栏目 情感分析与社会计算
研究方向 页码范围 132-142
页数 11页 分类号 TP391
字数 8974字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 柴玉梅 郑州大学信息工程学院 71 900 17.0 28.0
2 刘箴 宁波大学信息科学与工程学院 81 465 11.0 18.0
3 刘婷婷 宁波大学信息科学与工程学院 30 81 5.0 7.0
4 柴艳杰 宁波大学信息科学与工程学院 24 136 6.0 11.0
5 林怀逸 宁波大学信息科学与工程学院 1 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (53)
共引文献  (57)
参考文献  (9)
节点文献
引证文献  (2)
同被引文献  (18)
二级引证文献  (0)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(8)
  • 参考文献(1)
  • 二级参考文献(7)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(6)
  • 参考文献(1)
  • 二级参考文献(5)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(4)
  • 参考文献(0)
  • 二级参考文献(4)
2015(4)
  • 参考文献(1)
  • 二级参考文献(3)
2016(6)
  • 参考文献(2)
  • 二级参考文献(4)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
不平衡分类
情绪分类
均衡过采样
预训练词向量
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中文信息学报
月刊
1003-0077
11-2325/N
16开
北京海淀区中关村南四街4号
1986
chi
出版文献量(篇)
2723
总下载数(次)
5
总被引数(次)
45413
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导