基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
GEMSEC(graph embedding with self clustering)在计算节点特征的同时学习节点聚类,通过强制将节点进行聚类来揭露网络中的社区结构,但未考虑类别标签信息,导致学到的节点嵌入缺乏区分性.针对这一问题,提出了一种基于半监督聚类的网络嵌入方法(NESSC),将随机游走序列和少量节点类别标签作为输入,在计算节点特征和学习节点k-means聚类的过程中,利用类别标签信息指导聚类过程,同时重构已知节点类别标签信息,学习具有区分性的节点表示.在6个真实网络上进行节点聚类和节点分类评测实验,实验结果显示,NESSC方法明显优于无监督网络嵌入方法DeepWalk和GEMSEC,可以通过加入节点的标签信息来提高网络嵌入的效果.因此,通过网络节点的嵌入,可以高效地提取网络的有用信息,对于相关网络嵌入研究具有一定的参考价值.
推荐文章
基于半监督聚类的微视频标注方法
微视频标注
运动目标检测
事件驱动
半监督聚类
MFASSC:基于间隔Fisher分析的半监督聚类方法
半监督聚类
成对约束
间隔Fisher分析
数据降维
基于核自调整进行半监督聚类
半监督聚类
关联
马尔可夫随机域
K均值
高斯核
半监督极大熵聚类的研究
聚类分析
极大熵聚类
半监督学习
标签数据
距离学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于半监督聚类的网络嵌入方法
来源期刊 河北工业科技 学科 工学
关键词 人工智能其他学科 网络嵌入 聚类 半监督 区分性
年,卷(期) 2019,(4) 所属期刊栏目 研究与开发
研究方向 页码范围 246-252
页数 7页 分类号 TP181
字数 6250字 语种 中文
DOI 10.7535/hbgykj.2019yx04004
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张静 河北地质大学信息工程学院 19 19 3.0 4.0
2 李文斌 河北地质大学教务处 22 42 4.0 5.0
3 张志敏 河北地质大学信息工程学院 3 4 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (36)
共引文献  (11)
参考文献  (4)
节点文献
引证文献  (4)
同被引文献  (0)
二级引证文献  (0)
1957(1)
  • 参考文献(0)
  • 二级参考文献(1)
1969(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(5)
  • 参考文献(1)
  • 二级参考文献(4)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(2)
  • 参考文献(0)
  • 二级参考文献(2)
2016(1)
  • 参考文献(0)
  • 二级参考文献(1)
2017(2)
  • 参考文献(1)
  • 二级参考文献(1)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(4)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(4)
  • 二级引证文献(0)
2019(4)
  • 引证文献(4)
  • 二级引证文献(0)
研究主题发展历程
节点文献
人工智能其他学科
网络嵌入
聚类
半监督
区分性
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
河北工业科技
双月刊
1008-1534
13-1226/TM
大16开
河北省石家庄市裕华东路70号
18-327
1984
chi
出版文献量(篇)
2570
总下载数(次)
4
总被引数(次)
14826
论文1v1指导