基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Recommendation systems provide users with ranked items based on individual’s preferences. Two types of preferences are commonly used to generate ranking lists: long-term preferences which are relatively stable and short-term preferences which are constantly changeable. But short-term preferences have an important real-time impact on individual’s current preferences. In order to predict personalized sequential patterns, the long-term user preferences and the short-term variations in preference need to be jointly considered for both personalization and sequential transitions. In this paper, a IFNR model is proposed to leverage long-term and short-term preferences for Next-Basket recommendation. In IFNR, similarity was used to represent long-term preferences. Personalized Markov model was exploited to mine short-term preferences based on individual’s behavior sequences. Personalized Markov transition matrix is generally very sparse, and thus it integrated Interest-Forgetting attribute, social trust relation and item similarity into personalized Markov model. Experimental results are on two real data sets, and show that this approach can improve the quality of recommendations compared with the existed methods.
推荐文章
Lyocell与Model织物风格比较
再生纤维素纤维
Lyocell织物
Model织物
风格特征
单NEXT下军用被覆线的跨层容量分析
军用被覆线
跨层容量分析
溢出概率
有效信道容量
Zircon saturation model in silicate melts: a review and update
Zircon
Zircon saturation
Model
Silicate melt
Mafic to silicic melts
Peraluminous to peralkaline compositions
Igneous rocks
Thermometer
Anti-model测试框架的研究与实现
Anti-model测试
组件
面向方面
测试用例
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Interest-Forgetting Markov Model for Next-Basket Recommendation
来源期刊 国际计算机前沿大会会议论文集 学科 社会科学
关键词 Markov Social trust Next-Basket RECOMMENDATION Interest-Forgetting
年,卷(期) 2019,(1) 所属期刊栏目
研究方向 页码范围 29-31
页数 3页 分类号 C
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Markov
Social
trust
Next-Basket
RECOMMENDATION
Interest-Forgetting
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
国际计算机前沿大会会议论文集
半年刊
北京市海淀区西三旗昌临801号
出版文献量(篇)
616
总下载数(次)
6
总被引数(次)
0
论文1v1指导