基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
基于分群粒子群算法对平面度误差判定进行了研究.首先建立平面度误差评定数学模型,对平面度误差最小求解转化成对目标函数的非线性最优化问题;接着改进粒子群算法把粒子群一分为二,在不增加粒子个数和粒子维度的情况下,两个粒子群分别用来全局搜索和局部搜索,通过阈值判断早熟现象;最后给出了算法流程.实例验证结果表明:该算法具有较强的优化能力,对测试函数求解的最优解值数据波动性比较小,平面度的公差值为0.0073 mm,相比LSM、DM、TPM、PSO、ABC算法公差值平均分别减少了0.002 3 mm,0.002 5 mm,0.002 7 mm,0.0002 mm,0.000 5 mm,评定精度较高.
推荐文章
利用粒子群优化算法的平面度误差评定
粒子群优化算法
平面度
惯性权重
编码策略
评定
收敛性
基于VB精确评定平面度误差
平面度误差
最小包容区域法
最小二乘法
基于MATLAB的平面线轮廓度误差评定
平面曲线
轮廓度误差
最小区域法
最佳匹配
基于粒子群算法的圆柱度误差评定方法
圆柱度
误差评定
粒子群算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于分群粒子群算法的平面度误差评定研究
来源期刊 计量学报 学科 工学
关键词 计量学 平面度 误差评定 粒子群算法 阈值
年,卷(期) 2019,(6) 所属期刊栏目
研究方向 页码范围 980-985
页数 6页 分类号 TB92|TP391
字数 3052字 语种 中文
DOI 10.3969/j.issn.1000-1158.2019.06.07
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 毕立恒 16 37 4.0 5.0
2 朱彦齐 8 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (62)
共引文献  (45)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(5)
  • 参考文献(0)
  • 二级参考文献(5)
2008(9)
  • 参考文献(0)
  • 二级参考文献(9)
2009(5)
  • 参考文献(0)
  • 二级参考文献(5)
2010(7)
  • 参考文献(0)
  • 二级参考文献(7)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(8)
  • 参考文献(1)
  • 二级参考文献(7)
2013(6)
  • 参考文献(3)
  • 二级参考文献(3)
2014(2)
  • 参考文献(1)
  • 二级参考文献(1)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(3)
  • 参考文献(3)
  • 二级参考文献(0)
2018(1)
  • 参考文献(0)
  • 二级参考文献(1)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
计量学
平面度
误差评定
粒子群算法
阈值
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计量学报
月刊
1000-1158
11-1864/TB
大16开
北京1413信箱
2-798
1980
chi
出版文献量(篇)
3549
总下载数(次)
8
总被引数(次)
20173
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导