基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对旋转机械故障特征需要人工提取导致故障识别困难的问题,在传统卷积自编码网络基础上,提出一种一维多尺度卷积自编码的故障诊断模型.该模型首先使用并行、不同尺度的卷积核和反卷积核对输入信号进行特征提取和重构,然后将多尺度卷积核所提取到的特征图作为分类器的输入,最后用带标签的数据对全模型的参数进行微调.通过一组模拟故障信号数据和2组滚动轴承故障实验数据对一维多尺度卷积自编码模型进行验证,结果显示该模型可分别达到99.75%、99.3%和100%的诊断精度.此外,将一维多尺度卷积自编码模型与传统机器学习、卷积神经网络和卷积自编码网络进行诊断精度和重构误差的比较,最终结果表明所提出模型对于滚动轴承故障数据有更好的识别效果.
推荐文章
一种深度卷积自编码网络及其在滚动轴承故障诊断中的应用
深度学习
卷积神经网络
自动编码器
轴承故障诊断
堆叠自编码网络性能优化及其在滚动轴承故障诊断中的应用
故障诊断
堆叠自编码网络
标准化
滚动轴承
基于卷积神经网络的滚动轴承故障诊断方法
深度学习
卷积神经网络
特征自动提取
轴承故障诊断
基于多尺度熵的滚动轴承故障诊断方法
样本熵
多尺度熵
滚动轴承
故障诊断
复杂性
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种多尺度卷积自编码网络及其在滚动轴承故障诊断中的应用
来源期刊 东南大学学报(英文版) 学科 工学
关键词 故障诊断 深度学习 卷积自编码网络 多尺度卷积核 特征提取
年,卷(期) 2019,(4) 所属期刊栏目
研究方向 页码范围 417-423
页数 7页 分类号 TH133.3|TP18
字数 762字 语种 英文
DOI 10.3969/j.issn.1003-7985.2019.04.003
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 贾民平 东南大学机械工程学院 178 1997 21.0 36.0
2 丁云浩 东南大学机械工程学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (170)
共引文献  (292)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1954(1)
  • 参考文献(0)
  • 二级参考文献(1)
1959(1)
  • 参考文献(0)
  • 二级参考文献(1)
1979(2)
  • 参考文献(0)
  • 二级参考文献(2)
1986(2)
  • 参考文献(1)
  • 二级参考文献(1)
1991(2)
  • 参考文献(0)
  • 二级参考文献(2)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(3)
  • 参考文献(0)
  • 二级参考文献(3)
1998(4)
  • 参考文献(1)
  • 二级参考文献(3)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(5)
  • 参考文献(0)
  • 二级参考文献(5)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(5)
  • 参考文献(1)
  • 二级参考文献(4)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(5)
  • 参考文献(0)
  • 二级参考文献(5)
2009(9)
  • 参考文献(0)
  • 二级参考文献(9)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(7)
  • 参考文献(1)
  • 二级参考文献(6)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(7)
  • 参考文献(0)
  • 二级参考文献(7)
2014(14)
  • 参考文献(0)
  • 二级参考文献(14)
2015(23)
  • 参考文献(1)
  • 二级参考文献(22)
2016(51)
  • 参考文献(1)
  • 二级参考文献(50)
2017(16)
  • 参考文献(1)
  • 二级参考文献(15)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(3)
  • 参考文献(3)
  • 二级参考文献(0)
2019(3)
  • 参考文献(3)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
故障诊断
深度学习
卷积自编码网络
多尺度卷积核
特征提取
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
东南大学学报(英文版)
季刊
1003-7985
32-1325/N
大16开
南京四牌楼2号
1984
eng
出版文献量(篇)
2004
总下载数(次)
1
总被引数(次)
8843
论文1v1指导