基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
本文提出了一种边缘修正的超像素空间光谱核分类方法,该方法能够有效解决构建空谱核时超像素方法提取的空间信息完全依赖于同一个超像素特征,边缘处像素空间信息刻画不准确这一缺陷,从而有效提升分类精度.首先本文提出一种固定窗口与超像素结合的同质区域选择方法,对提取的邻域像素进行赋权,将超像素中固定窗口外的像素权值置零,得到修正的空间光谱核;其次,进一步考虑相邻超像素之间的相关性,得到相邻超像素间的空间特征光谱核,并与上一步中的空间光谱核进行凸组合得到修正的超像素空间光谱核,最后采用支持向量机进行分类.真实高光谱数据实验结果表明:本文方法能有效克服超像素空谱核的空间信息不稳定性,分类精度优于现有的最新的分类方法.
推荐文章
空谱超像素核极限学习机的高光谱分类算法
空间结构信息
超像素
同谱异类
极限学习机
基于空谱特征的核极端学习机高光谱遥感图像分类算法
局部二值模式
空谱结合
核极限学习机
高光谱遥感图像
基于图像分割和LSSVM的高光谱图像分类
高光谱图像分类
图像分割
LSSVM
数据降维
基于高光谱图像的分类方法研究
高光谱图像
支持向量机
人工神经元网络
决策树分类
最大似然分类法
K -均值聚类法
迭代自组织方法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于边缘修正的高光谱图像超像素空谱核分类方法
来源期刊 电子学报 学科 工学
关键词 高光谱图像分类 空谱核 超像素核 核方法
年,卷(期) 2019,(1) 所属期刊栏目 学术论文
研究方向 页码范围 73-81
页数 9页 分类号 TP751
字数 5845字 语种 中文
DOI 10.3969/j.issn.0372-2112.2019.01.010
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陈允杰 南京信息工程大学数学与统计学院 56 430 12.0 16.0
2 孙乐 南京信息工程大学计算机与软件学院 4 16 2.0 4.0
3 詹天明 南京审计大学信息与工程学院 7 20 3.0 4.0
4 马辰阳 南京信息工程大学数学与统计学院 1 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (19)
共引文献  (5)
参考文献  (19)
节点文献
引证文献  (2)
同被引文献  (18)
二级引证文献  (0)
1965(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(3)
  • 参考文献(1)
  • 二级参考文献(2)
2005(2)
  • 参考文献(2)
  • 二级参考文献(0)
2006(2)
  • 参考文献(1)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(5)
  • 参考文献(2)
  • 二级参考文献(3)
2012(3)
  • 参考文献(1)
  • 二级参考文献(2)
2013(7)
  • 参考文献(4)
  • 二级参考文献(3)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(4)
  • 参考文献(3)
  • 二级参考文献(1)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
高光谱图像分类
空谱核
超像素核
核方法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子学报
月刊
0372-2112
11-2087/TN
大16开
北京165信箱
2-891
1962
chi
出版文献量(篇)
11181
总下载数(次)
11
总被引数(次)
206555
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导