基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对高光谱图像分类过程中存在的样本量少和分类精度低的问题,提出一种基于空谱融合特征主动学习的高光谱图像分类方法.主要包括构造三通道图像,全卷积网络提取空间特征,空谱特征结合,主动学习方法选择训练样本几个部分.通过结合像素的光谱特性和相邻像素间的空间关联,提取出可以反映像素空谱联合特性的综合特征,提高了像素特征的表达能力.为克服高光谱图像标注数据少、缺乏训练样本的问题,应用主动学习算法,充分选择更具有代表性的样本进行训练,达到少样本情况下较高的分类正确率.通过在标准数据集上进行实验,结果表明:该方法可以达到在总样本数1%作训练样本的情况下,分类正确率达到99.79%,优于传统的高光谱分类算法.
推荐文章
基于空谱特征的核极端学习机高光谱遥感图像分类算法
局部二值模式
空谱结合
核极限学习机
高光谱遥感图像
空谱超像素核极限学习机的高光谱分类算法
空间结构信息
超像素
同谱异类
极限学习机
基于降维Gabor特征和决策融合的高光谱图像分类
高光谱图像
分类
Gabor特征
高斯混合模型
决策融合
PCA投影
基于SSAE深度学习特征表示的高光谱遥感图像分类方法
高光谱遥感图像分类
堆叠稀疏自动编码器
深度学习
特征表示
支持向量机
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于空谱融合特征主动学习的高光谱图像分类
来源期刊 上海航天 学科 地球科学
关键词 高光谱分类 全卷积网络 空谱融合 主动学习
年,卷(期) 2019,(5) 所属期刊栏目 人工智能航天应用
研究方向 页码范围 50-56
页数 7页 分类号 N37
字数 3508字 语种 中文
DOI 10.19328/j.cnki.1006-1630.2019.05.007
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 史振威 北京航空航天大学宇航学院 12 112 5.0 10.0
2 王琰 7 2 1.0 1.0
3 侯俊 5 2 1.0 1.0
4 张宁 10 52 4.0 7.0
5 刘丽芹 北京航空航天大学宇航学院 1 0 0.0 0.0
6 沈霞宏 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (8)
共引文献  (4)
参考文献  (16)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(2)
  • 参考文献(1)
  • 二级参考文献(1)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(6)
  • 参考文献(6)
  • 二级参考文献(0)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
高光谱分类
全卷积网络
空谱融合
主动学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
上海航天
双月刊
1006-1630
31-1481/V
上海元江路3888号南楼
chi
出版文献量(篇)
2265
总下载数(次)
4
总被引数(次)
11928
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导